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Abstract 

 In other to present a series of stochastic models from population dynamics capable of describing 

rudimentary aspects of genetic evolution, we studied two-allele Wright–Fisher and the Moran models for 

evolution of the relative frequencies of two alleles at a diploid locus under random genetic drift in a population of 

fixed size “simplest form, selection, and random mutation”. Principal results were presented in qualitative terms, 

illustrated by Monte Carlo simulations from R and http://www.radford.edu/~rsheehy/Gen_flash/popgen. Moran 

and the Wright-Fisher Models exhibited the same fixation probabilities, only that the Moran model runs twice as 

fast as the Wright-Fisher Model. A clue that can help us to understand this result is provided by the variance in 

reproductive success in the two models. Genetic changes due to drift were neither directional nor predictable in 

any deterministic way. Nonetheless, genetic drift led to evolutionary change in the absence of mutation (P=0.5), 

natural selection or gene flow. In general, alleles drift to fixation is significantly faster in smaller populations. 

Probability of fixation of an allele A was approximately equivalent to the initial frequency of that allele. With the 

inclusion of selection in our model, probability of fixation of a favoured allele due to natural selection increased 

with increase in fitness advantage and population size. The time taken to reach fixation is much slower, in case 

of no selective advantage, than a fixation under mutation with selective advantage. 
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Introduction 

 This paper aim to presents a series of stochastic 

models from population dynamics capable of describing 

rudimentary aspects of genetic evolution [11, 12, 13, 14, 

15, 16, 17]. With focus on the Wright-Fisher model and 

its variant [5, 6, 7, 8, 9, 10], the Moran model [2]; we 

describe a population of individuals (genes) of different 

types (alleles) organized into a finite population and 

where the change in composition of the population is 

caused by pure genetic drift i.e. randomness with no 

underlying deterministic behaviour [19]. We 

demonstrate that stochastic computer simulation is an 

important method for comparing the evolutionary 

patterns [5, 6] and processes associated with radically 

different intervals of time. 

Methodology 

The Wright-Fisher Model  

 We consider a finite population of 2N genes (or 

alternatively –N diploid organisms) with each haploid 

possessing either allele A or allele a, which assumes 

random reproduction, and generations are not 

overlapping,  

Let  xt  be the number of offspring at time t, in the state 

space [5, 6, 7, 8] 

     S2N = {0,1,…,2N}  ……(1)                                                                                                                         

    Let the initial generations contain i genes of allele A 

and 2N - i  genes of type a. Then we define a probability 

of choosing an A allele for the next generation (success) 

as: 

P = i /2N   …..(2) 

and the probability of choosing a non-allele A (failure) 

for each Bernoulli trial as: 

P’ = 1 - i /2N ……(3) 

 Where i is the initial frequency of allele A 

Then the transition probabilities from xt  to xt+1  is 

determined by sampling with replacement of 2N 

independent Bernoulli trials such that xt+1 = j is a 

binomial random variable from the genes of Generation 

t.  For any integer i, j: X0, …, Xt – 1   in the state space, 

we have 

P(xt+1 = j/Xt = i  xt+1 = xt-1 = xt-1 ,…, = X0 = x0) = P(xt+1 

= j/Xt = i)                  ……….(4) 

 This implies that given the present, the future is 

conditionally independent on the past. This expression 

which characterizes the Markov chain in general is the 

key to analyze the Wright-Fisher model, computed 

according to the binomial distribution as 

P(xt+1 = j/Xt = i  =Pij = (2N/j) (i/2N)j (1 –i/2N)2N-j 

Pij
 =(2N/j) pj q2N-j    ………(5)                                                                                                                      

 We can use (5) to describe a “transition 

probability matrix” for the Wright-Fisher model, which 

gives the probability of going from any state i to any 

state j in one generation, [1]. 

 We represent the initial state of the system 

using a vector  

ρ
(0) = (ρ0

(0) ρ1
(0)  ρ2

(0) …) 

ρ = (p(X(0) = 0) p(X(0) = 1) p(X(0) = 2)…)  …..(6) 

This Explains how the Markov Chain Starts 

 For example, if the population initially had two 

copies of the allele, then p(X(0) = 2)=1  and all other 

entries in this vector are zero. 

 

                                                                                                                             

 

 

 And therefore the transition of the system is 

then given by the matrix equation; 

 

 

 

 

 Each column sums to one because a population 

that starts with i copies of the allele must have some 

number between 0 and N copies in the next generation 

Pt+1 = ρpt  ⇒ ρ = pt+1/pt  ……..(11) 
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 The elements  pij in (10) are called the one step transition probabilities. More generally the n-step transition 

probability matrix is given by  

pij 
(n) = p(Xn = j/X0 = i  …….(12) 

By the Chapman Kolmogorov Equation 

 

                                                                                                                             

 

 

 

And by Extension, Markov Probability 

 

                                                                            

 

 

 

 

 The helpful part about writing (10) in matrix form is that it can be iterated using the rules of matrix 

multiplication  

The Moran Model 

 This model due to [2], although less popular than the WF model amongst biologists, represents a 

mathematically attractive alternative. This model is also known as a birth-and-death model. 

 Consider a Moran model for the evolution of a population of size N in which we track the number of 

individuals with a novel mutant allele (X) versus the number of individuals with the ancestral allele (N-X). Since the 

population size is a constant, this model has only one independent variable (X). Under the Moran model, evolution 

occurs when one individual is chosen to reproduce and, simultaneously, one individual is chosen to die.  

 let X be a random variable, representing the frequency of alleles of type A in the population, to replace 

individual X, we choose an individual at random from the population (including X itself) to be the parent of the new 

individual. Thus the model allows only one-step" transitions in which X either decreases or increases, but both 

transitions occur at the same rate, such that in population t + 1, the number of alleles A can be either                                 

(j = i - 1), (j = i + 1), or j = i. 

 The system can go from i to i+1 if A is chosen to reproduce an offspring and a is chosen to die, expressed 

as;  

Pi,i-1 =(2N-i/2N)  .(i/2N) 

 

= (1-p)   …….(15) 

Where p=i/2N  

 Similarly, if it is A that is chosen to die and a is chosen to reproduce, then the system can go from i to i-1, 

expressed below as; 

Pi,i+1=(2N-i/2N)  .(i/2N)  

=p (1 - p)    ……(16) 
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it takes either A to reproduce and die or a to reproduce and die, for the system to go from i to i, expressed as : 

Pi,I = (2N-i/2N  .(2N-i/2N)+ (i/2N .i/2N) 

=p2 + (1-p)2  …….(17) 

Where p = i/2N 

And therefore the transition probability for the implied Markov chain for the Moran model is given by; 

                    

 

 

 

 The probability of A to reach fixation is called the fixation probability. This holds true, for any neutral model 

of pure random drift (no mutation and selection) in an unstructured population, at that point, the population is 

composed of only A genes (Xt = 2N) or a genes (Xt = 0) . That is, with probability one, either of the absorbing states 

(either 0 or 2N) is eventually entered. 

Thus, for 0 < j < 2N, 

 

   

The probability of extinction given that it started with i copies is; 

 

 

And the probability of fixation given that it started with i copies is; 

 

 

 Note that with the martingale property (i.e. a random process without bias), the expectation at each time 

step is expected to be the same; 

E(Xt)=E[E(Xt/Xt-1)]=E(Xt-1)=E(Xt-2) 

= pA. 2N 

= i/2N . 2N 

= i  …………..(22) 

 This shows that the expected allele frequency is constant, [3] called this property the constancy of 

expectation, and nonetheless variability must be lost eventually through chance [4]. 

  Let,  

  u(i)= P (Xt = 2N/Xt  = i)   ……..(23) 

 Be the probability that A is eventually fixed in a population of size 2N that initially contains i copies of A.  

then,  

i = E[Xt/X0 = i] = 2N.P (Xt=2N/X0=i) + 0.P (Xt = 0/X0 = i)  

i = E [Xt/X0 = i]=2N.P (Xt = 2N/X0 = i) 

i = E [Xt/X0 = i] = 2N.u(i)  

∴i=2N.u(i)  
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u(i) = i/2N    ……..(24) 

 In an identical manner, we can also express the 

probability that A eventually becomes lost in the 

population (extinction at 2N). 

Let,  

          

 

Be the Probability of Extinction  

Then, 

i = E [Xt/X0 =i] = 0. 

P (Xt = 2N/X0 = i) + 2N. P (Xt = 0/X0 = i) 

i = E [Xt/X0 = i] = 2N. P (Xt=0/X0 = i) 

I = E[Xt/X0=i] = 2N. (1-u(i)) 

∴i=2N.(1-u(i) 

i = 2N-2N. u(i) 

∴u(i) = 1– i/2N    ……(26) 

 A similarity between the Moran model and the 

WF-model is that both models have the same fixation 

probabilities. The only difference is that the Moran 

model runs twice as fast as the WF-model, a result we 

will show in the next chapter. 

The Monte Carlo Experiment 

 The Monte Carlo model [18] simulates genetic 

drift using a random number generator to sample genes 

from a small parental population and passes them on to 

offspring. Population size is assumed to be constant 

from generation to generation and gene frequency 

changes the result only from the random sampling 

process. 2N individuals will be simulated in the 

population, and in each generation each individual will 

reproduce randomly and independently [19]. This could 

store the results for each generation in a data frame and 

then allow one to plot them in a graph.   

Experiment 1 

 Population Size (To investigate the effect of 

population size and genetic drift) 

 The population size is allowed to change and to 

see a graphical display of the change in frequency of 

allele A overtime in generations, each different line is a 

separate locus (replicate). Fixation of allele A occurs 

when its frequency reaches 1.0, which implies extinction 

of allele a. Running  unlinked loci simultaneously 

(collectively), each with initial gene frequencies of 0.5 is 

used to explore the effect of changing the population 

size by running the programme for different population 

sizes between 5 and 50. Each time we run the 

simulation, we;  

• Record the number of fixed loci for A and for a as 

well as the number of loci which remain 

polymorphic. 

• Approximate the number of generations until 

fixation and extinction for each population explored. 

 Simulations were repeated 20, 50 and 100 times 

for a total of 5 replicates for each population size. 

Experiment 2: Fixation 

 To explore the number of generations it takes 

for one type to either fixes or go extinct, we will run 

unlinked loci simultaneously (collectively), each with an 

initial population size of 10, and simulations will be for 

100 generations. To explore the fixation of an allele, by 

running this program for different population sizes, we 

will record the total number of loci fixed for allele A each 

time we run the simulation. 

 Markov Chain Monte Carlo (MCMC) [18, 19], a 

widely applicable stochastic simulation method. Instead 

of attempting to minimize the role of chance, MCMC 

instead introduces chance into problems, event those 

that are deterministic (such as computing the average of 

a probability distribution). 

Design of the Simulation Procedure  

Monte Carlo Experiments were Carried out Based on the 

Following data Generating Processes 

1. individual alleles A and a assumed to follow a 

binomial distribution with parameters 2N and P 

(where P is the initial proportion of each allele) 

2. Values of N were varied as 5, 10, 20 and 50 to 

represent small and moderate sample of number of 

individuals in the population. 

3. P is 0.5 if alleles are assumed to be contained in the 

same proportion at generation 0, and P=0.2 if 

alleles are assumed to be contained in the same 

proportion at generation 0 

4. j will be generated as the number of copies of allele 

in the next generation. 
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 For all experiments, iterations were made at 20, 

50 and 100 times by the same series of random 

numbers. 

Results and Discussions 

 Figures 1 and 2 showed the graphical 

representation of the drift of 5 alleles with initial 

frequency of 0.5 in a typical Wright-Fisher Model which 

showed genetic divergence as a function of population 

size. These two Plots demonstrate the graphical 

representation of drift of 5 alleles with initial frequency 

0.5 for N=5 and 50 respectively. Every color represents 

one allele. In the bigger population there is only one 

allele fixation that occurs after about 25 generation (X2) 

and another (X3) at about 90th generation while the 

other alleles (X1, X4 and X5) did not achieve fixation. On 

the other hand there were relative large amount of 

alleles fixations in a short time (5-20 generations) of all 

the alleles in the small population. In general, alleles 

drift to fixation in Figure 1 significantly faster in smaller 

populations. 

 Figure 2 below illustrated the outcome of five 

replicates of simulation of the Moran’s model starting 

with i = 50 copies of type A in a population of size N =5 

and 50 respectively. The simulations looked similar to 

those from the Wright-Fisher model without selection 

(Figure 1). There are differences; however, the allele 

frequency only jumped by 1/N in the Moran model, 

whereas much larger jumps can occur in the         

Wright-Fisher model.  

 

Figure 1. Genetic drift of the process based on the                    

Wright-Fisher’s model when N=5 left and N=50 right  
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 The main qualitative difference, however, is the 

scale along the x axis. There are only 100 generations 

represented in Figure 1 of the Wright-Fisher model, but 

1,000 birth-death events represented in Figure 2 of the 

Moran model. One might be tempted to conclude that 

the Moran model exhibits less drift, but this is not a fair 

comparison. One time step in the Wright-Fisher model 

involves N births followed by the death of all N parents 

and so is more equivalent to N birth-death events in the 

Moran model. Thus, these figures all represent the same 

total number of generations (100). Over this period, and 

with only five replicates each, it is unclear which model 

exhibits more drift. The above results showed that 

polymorphism lost significantly faster in the Moran 

model than in the Wright-Fisher model. This seems 

counter intuitive, because the Moran model makes only 

little jumps in frequency, whereas the Wright-Fisher 

model could make large jumps. A clue that can help us 

to understand this result is provided by the variance in 

reproductive success in the two models. When 

reproductive success has more variable, stochasticity 

(here, random genetic drift) plays a stronger role, and 

polymorphism will be lost by chance more rapidly. 

 For our genetic model, we can also describe 

figure 2 with a “transition probability matrix” for the 

Wright-Fisher model, which gives the probability of 

going from any state i to any state j in one generation. 

Because we could have anywhere from 0, 1, 2, to N 

copies of type A, this matrix has N +1 rows and 

columns, in our population of size five, the transition 

probability matrix is to j from i 

Figure 2. Genetic drift of the process based on the  

Moran’s model when N=5 and N=50 
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 Each rows sum to one because a population that starts with i copies of the allele must have some number 

between 0 and 2N copies in the next generation:  

 

 

 The first and last rows are particularly simple because there is no mutation; if nobody is type A (i = 0; first 

column) or if everybody is type A (i = N; last column), then no further changes are possible. 

The matrix pij can be iterated using the rules of matrix multiplication. P2 tells us the probability that there were j cop-

ies at time t+2 given that there was i copies at time t. In general, Pt tells us the probability that there were j copies 

at time t given that there was i copies at time 0. For example, calculating P100 using equation (using a mathematical 

software package) gives 

 

 

 

 

 

 

(The zeros in the middle of this matrix are not exactly zero, but they are less than 10_156). 

 The initial state of the system is represented using a vector, since our population initially had two copies of 

the allele, then P(X (0) =2) =1 and all other entries in this vector are zero. 

ρ(0) = (0 0 1 0 0 0) 

 Multiplying P100 on the right by this initial vector, gives; 

 

 

 

 

 

 The vector on the right indicated that there is approximately 50% chance that type A will be lost (j =0) after 

100 generations and a 50% chance that type A will be fixed (j=5). 

 These results suggested that if we start with i copies of type A, then type A will eventually be lost with                

probability 1-i/2N  and fixed with probability i/2N 

Given that no clear conclusions emerge from a few replicate simulations, we must run many more replicate               

simulations to compare the Wright-Fisher and Moran models. Starting with p (0) = 0.5 and p (0) = 0.2 in a                      

population of size from 5 to 50, we ran 20, 50 and replicate simulations on each population until fixation or loss of 

type A. 
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 Table 1 showed the simulation results for the 

Wright-Fisher model at different population sizes (N=5, 

10, 20 and 50) and replicate simulations of (20, 50 and 

100) contained at the same proportion at 0.5 and 0.10 

which is in parenthesis. For the Wright-Fisher Model and 

the Moran Model, at a population size of 5 and at the 

various iterative levels, the probabilities of fixation are 

0.6, 0.52, 0.57 and 0.45, 0.44, 0.51 respectively. Also at 

a population size of 10 and at the various iterative     

levels, the probabilities of fixation are 0.55, 0.52, 0.51 

and 0.40, 0.56, 0.59 respectively. For p (0) = 0.2, the 

Wright-Fisher Model and the Moran Model, at a           

population size of 5 and at the various iterative levels, 

the probabilities of fixation are 0.25, 0.22, 0.23 and 

0.15, 0.15, and 0.06 respectively. Also at a population 

size of 10 and at the various iterative levels, the        

probabilities of fixation are 0.25, 0.26, 0.24 and 0.40, 

0.56, 0.59 respectively. This result showed that the 

probability of fixation of an allele A is approximately 

equivalent to the initial (starting) frequency of that               

allele. The result in the table above showed that                             

assuming genetic drift is the only evolutionary force            

acting on an allele, at any given time the probability that 

an allele will eventually become fixed in the population is 

simply its frequency in the population at that time i.e. 

probability of an allele fixing is almost the same as the 

starting     frequency. 

 Table 2 showed the comparison between    

Wright-Fisher model and the Moran model at different 

population sizes and the variance of reproductive         

individuals. This table revealed that Moran Model         

exhibits twice the variance in reproductive success and 

therefore consequently, this indicated more genetic drift 

towards Wright Fisher Model. In the Wright-Fisher        

model, the variance in reproductive success of single 

individuals, r 2, is given by the binomial variance N p       

(1 =p) from equation (5). When there is a single          

individual (i.e., with p =1/N). Thus, r =1-1>N. To        

calculate the variance in reproductive success over a 

single birth-death event in the Moran model, we use the 

formula for calculating variance, summing the squared 

change in number of copies over all possible transitions 

using equation (18). Since the time to fixation varies 

between simulations, to obtain a sense of the                             

possibilities, we simulated the fate of our population of 

alleles large number of times, until fixation and            

extinction are achieved, We then summarize the            

distribution by finding the mean fixation time and          

average extinction time. 

 At different number of iterations and population 

sizes, table 3 showed the average time until fixations 

and extinctions in the Wright-Fisher Model and Moran 

Model in parenthesis. 

 We can see from the table that the time to       

fixation or extinction of an allele is related to population 

size. The larger the population size, the longer it takes 

to achieve fixation, i.e. Probability of fixation is also        

influenced by population size for both Models 

 Our models allow the inclusion of other            

evolutionary forces: selection and mutation 

Selection 

 So far, we have considered only neutral models 

of evolution, that is, those for which there is no           

preference for a particular allele. Despite being               

apparently a reasonable model for some aspects of                

genetic, ecological or linguistic behavior, geneticists in 

particular have been interested in the fate of alleles that 

  WRIGHT-FISHER MODEL MORAN MODEL 

  N=5 N=10 N=20 N=50 N=5 N=10 N=20 N=50 

20 0.6(0.25) 0.55(0.25) 0.50(0.10) 0.15(0.15) 0.45(0.25) 0.40(0.25) 0.6(0.15) 0.60(0.15) 

50 0.52(0.22) 0.52(0.26) 0.46(0.15) 0.15(0.15) 0.44(0.24) 0.56(0.26) 0.44(0.30) 0.50(0.24) 

100 0.57(0.23) 0.51(0.24) 0.38(0.24) 0.06(0.06) 0.51(0.23) 0.59(0.23) 0.39(0.23) 0.43(0.20) 

Table 1. Probabilities of fixation of the allele A at P=0.5 and P=0.2 in parenthesis 
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are selected for or against [20]. The relationship                   

between the genetic make-up of an individual and its 

survival is of course very complicated. However, one can 

explore the effects of selection by simply introducing 

parameters that determine how many offspring an                

individual carrying a particular allele (or combination of 

alleles when diploid organisms are being considered) has 

on average. In this section we offer a small taste of 

some evolutionary models that encompasses selection. 

Fitness here is a measure of reproduction and survival. 

AA=1.0, Aa=0.75   and aa=0.50 

 Here, the allele A is more fit than the type a and 

began at a frequency of p (0) =0.2. The simulations 

were run for populations of sizes N = 5, 10, 20 and 50. 

In all cases, the alleles rose in frequency towards         

fixation within 100 generations. When the population 

size was small, the Wright-Fisher model exhibits more 

variability around the deterministic trajectory than when 

the population size was large. When N was only 5 and 

10, we observed extinction of the beneficial allele in one 

of the five replicates, which made the probability of      

fixation to be 0.95 and 0.9 respectively, however, when 

population size became larger (N=20 and 50), none of 

the replicates went into extinction, and had the           

probability of fixation to be 1.0. Similar behavior           

occurred at a frequency of p (0) =0.5. Irrespective of 

the population size, there was not an extinction of the 

beneficial allele in any of the five replicates, which gave 

the probability of fixation to be 1.0. The probability of 

fixation of a favored allele due to natural selection       

increases with increased fitness advantage and with    

increased population size. 

 Also, in table 4, results showed that selection 

alone drives the system into a state consisting of only 

the better fit variant thereby prevented the detrimental 

allele from increasing in the population. 

 These figures illustrated an important point: 

adding stochasticity to a model need not cause major 

changes to the results. In populations of small size           

(N = 50), we have seen allele frequency changed when 

there should have been none (the neutral case, Figure 

2), and we have witnessed the loss of a beneficial allele, 

which we would expect to fix (table 4). We observed 

that when the amount of chance (here represented by 

variation in samples from the binomial distribution) is 

small relative to other forces like selection, stochastic 

models can behave very much like deterministic models. 

Over Dominance (Aa has the Highest Fitness) 

 Over dominance = heterozygote most fit.      

Surprising things happen when the heterozygote is most 

fit. 

 In table 5, alleles initial frequencies were not 

50/50, Strong selection was acting, but the allele         

frequencies did not change (compared with table 4). At 

a population size of 5, the probability of fixation was 

0.95, at a population size of 10, the probability of         

fixation was 0.9 but at population size of 20 and 50       

respectively, there was no fixation of any of the alleles. 

This was because genetic drift was a function of          

population size. The population was said to be at         

equilibrium state. The ratio 50/50 was because the        

homozygotes are equally bad. In table 5, the A allele 

begins at a frequency of p (0) =0.5, simulations were 

ran for populations of sizes N = 5, 10, 20 and 50. In all 

cases, the alleles increased in frequency towards fixation 

within 100 generations.  

 At a population size of 5, all alleles experienced 

  WRIGHT FISHER MODEL MORAN MODEL 

N=5 1.25 2.5 

N=10 2.5 5.0 

N=20 5.0 12.5 

N=50 12.5 25.0 

Table 2. Variance of Reproductive Success 
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  Probability of fixation Average time until fixation 

N=5 0.95 (1.0) 39.0 (25.60) 

N=10 0.6 (0.8) 45.33 (38.25) 

N=20 0.0 (0.6) - (44.33) 

N=50 0.0 (0.0) -  (-) 

Table 5. Probabilities of Fixation and Average Time until Fixation of the A allele with Over 

Dominance at P=0.2 and P=0.5 in parenthesis 

  Probability of fixation Average time until fixation 

N=5 1.0 (0.95) 6.6(11.42) 

N=10 1.0 (0.90) 14.0(13.94) 

N=20 1.0 (0.10) 11.5(15.50) 

N=50 1.0 (0.10) 15.35(19.00) 

Table 4. Probabilities of Fixation and Average Time until Fixation of the allele A with Selective 

Advantage at P=0.2 and P=0.5 in parenthesis. 

  N=5 N=10 N=20 0 

  Average 

time until 

fixation 

Average time 

until extinction 

Average time 

until fixation 

Average 

time until 

extinction 

Average 

time until 

fixation 

Average 

time until 

extinction 

Average time 

until fixation 

Average 

time until 

extinction iterations 

20 
8.20 

(13.0) 

11.50  

(11.1) 

24.80 

(14.22) 

21.11 

(46.25) 

47.70 

(40.33) 

42.75 

(56.38) 

64.5 

(140.92) 

74.00 

(136.50) 

50 
13.92  

(13.5) 

10.0 

(11.96) 

25.15 

(27) 

25.04 

(22.77) 

50.39 

(49.59) 

43.71 

(47.14) 

68.89 

(151.08) 

71.17 

(147.72) 

 
15.07 

(13.57) 

9.8 

(12.43) 

23.53 

(25.46) 

24.71 

(26.83) 

48.76 

(52.38) 

40.38 

(49.48) 

65.33 

(122.65) 

65.35 

(110.90) 

Average 
12.40 

(13.51) 

10.47 

(11.83) 

36.74 

(33.57) 

23.62 

(31.95) 

48.95 

(47.43) 

42.28 

(51.12) 

66.24 

(138.22) 

70.35 

(131.71) 

Table 3. Average Time until Fixation and Extinction of the allele A in the Wright-Fisher Model and Moran Model 

in parenthesis. 
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fixation (probability of fixation =1.0). At a population 

size of 20. However, not all alleles experienced fixation 

(probability of fixation = 0.6), but a population size of 

50, no allele experienced fixation (probability of fixation 

=0). The larger the population size, the longer it takes 

to achieve fixation. 

 Example of heterozygote most fit is the case of 

the sickle-cell trait (in the presence of malaria) 

A/A people die of malaria 

S/S people die of sickle-cell anemia. 

 In conclusion, table 5 showed that over domi-

nance maintain allele at high frequency in a population 

and guaranteed the stability of genetic polymorphism. 

Under Dominance (Aa has the Lowest Fitness) 

 Under dominance= heterozygote less fit 

 Here alleles are not contained in the same        

frequency in generation 0. At a population size of 5, 

probability of fixation = 0.25, at a population size of 20 

however, probability of fixation reduced to 0.1, but a 

population size of 50, no allele experienced fixation 

(probability of fixation =0), all these indicated high      

probability of extinction (fixation of the allele a). Allele a 

will fix even though it does not maximizes population 

fitness. The population rolls to a small fitness peak, even 

though a larger one is possible. Population, which is 

fixed for allele a will, resists introduction of allele A. Here 

alleles are contained in the same frequency in           

generation 0, equilibrium is said to exit and the            

population is unstable. At a population size of 5,                   

probability of fixation = 0.9, at a population size of 20, 

probability of fixation reduced to 0.9, but a population 

size of 50, all the alleles experienced fixation (probability 

of fixation =1.0), all this indicates high probability of 

extinction of the a allele. Table 6 

 When the heterozygote has the lowest fitness, 

the system is considered unstable, allele frequency will 

move until either A or a is fixed. Equilibrium occurs at 

50% of each allele. 

When P (A) is above equilibrium A will be fixed. 

When P (A) is below equilibrium a will be fixed. 

 Example of the under dominance is the African 

butterfly pseudacraea eurytus, the orange and blue      

homozygotes each resemble a local toxic species, but 

the heterozygote resembles nothing in particular and is 

attractive to predators. 

 Although mutation is sometimes considered as 

the raw material of evolution, it is a very weak force in 

changing allele frequency. As shown in table 12 above, 

starting with an initial frequency of 0.2, it will take a 

hundred generations to change the frequency of the A 

allele to 0.1998 and a thousand generations to change 

the frequency to 0.198. Suppose alleles are contained in 

the same proportion with a frequency of 0.5, after a 

hundred generations, the frequency of the A allele will 

change 0.499 and a thousand generations to change the 

frequency to 0.495. But suppose only A alleles are      

contained in the population with a frequency of 1.0,    

after a hundred generations, the frequency of the A     

allele will change to 0.998 and a thousand generations 

to change the frequency to 0.990. Table 7 

 In table 8, the A allele begins at a frequency of 

p (0) =0.2 and p (0) =0.5. At a population size of 5, the 

probability of fixation was 0.15 with an average time 

until fixation to be 16.00, when the population size      

became 10, the probability of fixation was 0.2 with an 

average time until fixation of 29.6, but when the         

population size became 20, the probability of fixation 

was 0.25 with an average time until fixation of 60.0. The 

larger the population size, the longer it takes to achieve 

fixation. These results indicated that the probability of 

fixation with or without mutation rate was still             

approximately its initial frequency. 

 At a population size of 5, the probability of      

fixation was 0.45 with an average time until fixation to 

be 7.67, when the population size became 10, the     

probability of fixation was 0.4 with an average time until 

fixation of 17.7, but when the population size became 

20, the probability of fixation was 0.2 with an average 

time until fixation of 43.7. The larger the population 

size, the longer it takes to achieve fixation.  

 These results indicated that the probability of 

fixation with or without mutation rate was still            

approximately its initial frequency. 

 In table 9, the A allele begins at a frequency of 

p (0) =0.2.  at a  population size 5, the probability of 

fixation is 0.8 while the average time until fixation was 

9.38,but at a population size of 10, 20 and 50, the    

probability of fixation was 1.0 while the average time 
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  Probability of fixation Average time until fixation 

N=5 0.25 (0.9) 10.8 (5.94) 

N=10 0.1 (0.95) 9.5 (7.84) 

N=20 0.1 (0.9) 17.0 (9.67) 

N=50 -  (1.0) - (20.0) 

Table 6. Probabilities of Fixation and Average Time until Fixation of the A allele with Under Domi-

nance at P=0.2 and P=0.5 in parenthesis 

  Probability of fixation Average time until fixation 

N=5 0.15 (0.45) 16 (7.67) 

N=10 0.2  (0.4) 29.6 (17.7) 

N=20 0.25 (0.2) 60.0 (43.7) 

N=50 - (0.1) - (64.75) 

Table 8. Probabilities of Fixation and Time until Fixation of the A allele with Mutation Rate (µ= 1 

* 10-5, v= 1* 10-6) at P=0.2 

  Probability of fixation Average time until fixation 

N=5 0.8 (1.0) 9.38 (8.15) 

N=10 1.0 (1.0) 13.65 (10.22) 

N=20 1.0 (1.0) 15.95 (9.6) 

N=50 1.0 (1.0) 19.50 (13.7) 

Table 9. Probabilities of Fixation and Time until Fixation of the A allele with Selective Advantage 

and Mutation Rate (µ= 1 * 10-5, v= 1* 10-6) at P=0.2 and P=0.5 in parenthesis 

Numbers of generations 100 200 500 1000 

P=0.2 0.1998 0.1996 0.199 0.198 

P=0.5 0.499 0.499 0.497 0.495 

P=1.0 0.9990 0.998 0.995 0.990 

Table 7. Effect of Mutation rate on the ratio of change in Allele Frequencies (µ= 1 * 10 -5, v= 1* 

10-6) 
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until fixation were 13.65, 15.95 and 19.50. This           

indicated that the larger the population, the longer it 

takes to achieve fixation. 

 In table 9, the A allele were assumed to be at a 

frequency of p (0) =0.5 in the first generation. Here, 

irrespective of the population size, all alleles in the five 

replicates experienced fixation and the average time 

until fixation for each population was 8.15, 10.22, 9.6 

and 13.7. The results obtained in table 9 can be         

compared to table 4. It was noticed that similar results 

were obtained; this established the fact that mutation 

alone is a weak force of allelic evolution.  

 There is a behavioural difference between     

mutation with and without Selective Advantage. The 

time taken to reach fixation is much slower, in case of 

no selective advantage, than a fixation under mutation 

with selective advantage. To illustrate the difference 

between the two types of mutation, from the results 

obtained in tables 8 and 9 above, a population size of 5 

individuals and with a life time of 100 years. Under these 

conditions, it will take a neutral mutation, on        aver-

age 16 years to become fixed in the population, but 

when we compared to a mutation with selective             

advantage(s) of 0.00001, the mutation will become fixed 

in the same population in only 9.38 years. If the           

selection coefficient is much larger than the mutation 

rate, there exists a broad interval of population sizes, in 

which weakly diverse populations are almost neutral 

while highly diverse populations are controlled by          

selection pressure. 

Conclusions and Recommendation 

 The procedure of stochastic modeling is not, of 

course, restricted to statistics. In particular, stochastic 

models have played a pivotal role in understanding the 

dynamics of evolutionary systems and as such one sees 

many similarities in the approaches and methods that 

have been used to those employed by Statistician. This 

paper has been a review of the ideas and formalism 

used to model stochastic processes in fields that                         

statistical physicists are not typically acquainted with, 

specifically population genetics, ecology and linguistics. 

As a consequence, some parts of the discussion will 

seem familiar, other parts will not. We have tried, and 

we hope that we have succeeded, to explain the       

background ideas and motivation, since this will be the 

greatest obstacle to understanding among a readership 

of statistical physicists. On the other hand the degree of 

mathematical sophistication that has been assumed is 

greater than would be typical outside physics or       

mathematical biology.   

 In our discussions of the mathematical models, 

we have mostly used the language of population         

genetics, but the results obtained are more widely      

relevant. As the evolutionary paradigm becomes even 

more widely applied, there may be other areas in which 

analogies can be drawn. It is interesting to know how 

neutral processes turned out to have greater importance 

in all three areas we discussed. At the very least, neutral 

theories can be thought of as null models, against which 

data and other models can be compared. Most textbooks 

in population genetics begin their discussion of genetic 

drift with the Wright–Fisher model, although for        

physicists the use of non-overlapping generations and a 

‘time’ measured in number of generations will not       

appear so natural. The Moran model, which has exactly 

the same limit when the number of genes becomes 

large, is far more familiar, resembling a birth/death     

process where a death is immediately followed by a 

birth. In addition, the continuous time limit may easily 

be taken, leading to a master equation of a kind well 

known in statistical physics. 

 In genetics, ecology or language, just as in 

physics, reality cannot be described by ideal models; 

there will be a multitude of ways in which real systems 

deviate from the ideal models created by scientists when 

they first enter a field. One of the methods that have 

been devised by population geneticists to deal with this 

will be very familiar to physicists. This is to characterize 

a non-ideal system by a few parameters, which will 

hopefully, if chosen correctly, capture the essence of the 

system. It may be that a simple model can then be     

utilized, but with these parameters built in. An example 

is the effective population size, N, discussed in the       

literature, which reflected how the non-ideal nature of 

the system changes the effective value of N: the           

effective size of the real population being the number of 

individuals in the ideal population which gave the same 

magnitude for the quantity of interest. The reason of our 

interest is not just the mathematical elegance of these 

models, but with the availability of massive amount of 

sequencing data. We actually can use these models (or 
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advanced models incorporating variable population size, 

mutation effect etc., to solve and answer real questions 

in molecular biology. The stochastic evolution of a DNA 

segment that experiences recombination is a complex 

process; so many analyses are based on simulations. 

The aim of this paper is to give an account of useful an-

alytical results in population genetics, together with their 

proofs. 
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