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Abstract 

 Understanding the implication of Genotype-by-Environment (GXE) interaction structure is an important 

consideration in plant breeding programs. Traditional statistical analyses of yield trials provide little or no insight 

into the particular pattern or structure of the GXE interaction. In this study, efforts were made to solve these 

problems under different level of data occurrence. We employed the simulation process of Monte Carlo in 

generating since use of a real-life data may pose a serious difficulty. In this paper, we simulated for two data 

Types of Balance and Unbalance designs with different Levels of generations (3X3, 7X7, 10X10, and 3X7, 7X3,  

7X10, 10X7 , ,  respectively). We therefore check the performance of GXE  interaction on four different models 

(AMMI, FW, GGE and Mixed model), and also their stability and adaptability. The findings revealed that, when 

the assumption was maintained, AMMI outperformed Finlay-Wilkinson model, GGE Biplot model and Mixed 

model. 
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Introduction 

 Food insecurity is a big challenge in Africa [8]. 

Sub-Saharan Africa is the only region in the world 

currently facing both widespread chronic food insecurity 

and threats of famine [2]. This challenge can be 

addressed through focusing on a crop that requires low 

input and at the same time can meet major nutritional 

needs of the people in this region. 

Genotype-by-Environment Interaction (GEI) 

 Multi-location trials play an important role in 

plant breeding and agronomic research. A number of 

parametric statistical procedures have been developed 

over the years to analyze genotype by environment 

interaction and especially yield stability over 

environments. A number of different approaches have 

been used to describe the performance of genotypes 

over environments. Therefore, the function that 

described the phenotypic performance of a genotype in 

relation to an environmental characterization is called 

the "norm of reaction" (Griffiths et al., 1996). 

 Figure 1A shows the case where there is no GEI, 

the genotype and the environment behave additively 

(this will be developed later) and the reaction norms are 

parallel. The remaining plots show different situations in 

which GEI occurs: divergence (Figure 1B), convergence 

(Figure 1C), and the most critical one, crossover 

interaction (Figure 1D). Crossover interactions are the 

most important for breeders as they imply that the 

choice of the best genotype is determined by the 

environment. 

 Crossa [1] pointed out that data collected in 

multi-location trials are intrinsically complex having three 

fundamental aspects: structural patterns, nonstructural 

noise, and relationships among genotypes, 

environments, and genotypes and environments 

considered jointly. Plant Breeders generally agree on the 

importance of high yield stability, but there is less accord 

on the most appropriate definition of "stability" and the 

methods to measure and to improve yield stability 

(Becker and Leon, 1988). Finlay et al. (2007) tested six 

spring wheat cultivars at five locations across Manitoba 

and Saskatchewan over two years to examine genotypic 

and environmental variation in grain, flour, dough and 

bread-making characteristics. They reported that the 

relative magnitude of the environmental contribution to 

wheat variance, depending on the trait (including yield), 

was considerably larger (14 to 89%) than the variance 

contribution of either genotype (0 to 33%) or G x E 

interaction (0 to 17%). Rodrigues, Monteiro and 

Lourenco [7] also reviewed the performance of the 

robust extensions of the AMMI model is assessed 

through a Monte Carlo simulation study where several 

contamination schemes are considered. Applications to 

two real plant datasets are also presented to illustrate 

the benefits of the proposed methodology, which was 

broadened to both animal and human genetics studies. 

 The general aim of this study is to determine 

which of these models best suit GEI using Monte Carlo 

simulated data. The specific objectives are: (i) to 

compare the various statistical methods and determine 

the most suitable parametric procedure that best 

describe genotype performance under multi-location 

trials, (ii) to determine the efficiency of each method 

(AMMI, Finlay-Wilkinson, GGE and Mixed model) in 

detecting GEI and (iii) also to determine the adaptability 

and specificities of the methods. 

Figure 1. GEI in terms of changing mean               

performances across environment 
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Materials and Methods 

 A combined analysis of variance procedure is the 

most common method used to identify the existence of 

GEI from replicated multi-location trials. If the GEI 

variance is found to be significant, one or more of the 

various methods for measuring the stability of genotypes 

can be used to identify the stable genotype (s). A wide 

range of methods is available for the analysis of GEI and 

can be broadly classified into four groups: the analysis 

of components of variance, stability analysis, 

multivariate methods and qualitative methods. 

 The methods to be adopted in this study are 

suitable for the plant breeders in estimating Genotype 

by Environment Interaction (GEI) parameters. The 

methods are as follows; 

AMMI Model 

 The AMMI model combines the features of 

ANOVA and SVD as follows: first, the ANOVA estimates 

the additive main effects of the two-way data table; 

then the SVD is applied to the residuals from the 

additive ANOVA model, estimating N≤min(I-1, J-1) 

interaction principal components (IPCs). The model can 

be written as [5, 6] 

   

 

 ….(1) 

 where yijk is the phenotypic trait (yield or some 

other quantitative trait of interest) of the ith genotype in 

the jth environment for replicate k; model 

 μ is the grand mean; 

 αi are the genotype deviations from μ; 

 βi are the environment deviations from μ; 

 n is the singular value of the IPC analysis axis n; 

 γn,i and δn,j are the ith and jth genotype and 

environment IPC scores (i.e. the left and right singular 

vectors, scaled as unit vectors) for axis n, respectively; 

 ρi,j is the residual containing all multiplicative terms not 

included in the model; 

 eijk is the experimental error; and N is the number of 

principal components retained in the model. 

In matrix formulation the AMMI model can be written 

as:  

    

 …..(2)    

 where Y is the (IXJ) two-way table of genotypic 

means across environments. The interaction part of the 

model Y*=Y-I 1
T
J μ - αI 1

T J - 1Iβ
T

J is approximated by the 

product of matrices UDVT, with U an (IXN) matrix whose 

columns contain the left singular vectors interactions of 

n, D a (NXN) diagonal matrix containing the singular 

values of Y*, and V a (JXN) matrix whose columns 

contain the right singular vectors of Y*  

Finlay-Wilkinson Model 

 A more attractive alternative is to extend the 

additive model:   

 

     

by incorporating terms that explain as much as possible 

of the GEI. A popular strategy in plant breeding is that 

proposed by Finlay and Wilkinson [4], which describes 

GEI as a regression line on the environmental quality. In 

the absence of explicit environmental information, the 

biological quality of an environment can be reflected in 

the average performance of all genotypes in that 

environment. The GEI part is then described by 

genotype-specific regression slopes on the 

environmental quality, and the model can be written in 

the following equivalent ways: 

  

 …..(4) 

    

    …..(5) 

Model (5) follows from model (4) by taking μ+αi=α’i 

andβj + bj βi = (1+bj) βj = bt
’ βj Model (5) is easier to 

interpret because it looks as a set of regression lines; 

each genotype has a linear reaction norm with intercept  

α’i and slope b’i. The explanatory environmental variable 

in these reaction norms is simply the environmental 

main effect βj. Model (4) shows more clearly how GEI is 

captured by a regression on the environmental main 

effect, with the hope that as much as possible of the 

1 1 1 1T T T T

I j I J I JY UDV   = + + + +

ij i j i j ijy b e   = + + + +

' '

iij i j ijy b e = + +
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GEI signal will be retained by the term bt βj. Note that in 

model (5) the average value of b’is 1, meaning that  b’ 

> 1 for genotypes with a higher than average sensitivity, 

and b’ > 1  for genotypes that are less sensitive than 

average. 

GGE Model 

 Plant breeders are interested in the total genetic 

variation and not exclusively in the GEI part. For that 

reason, it is useful to have a modification of model (1) 

that considers the joint effects of the genotypic main 

effect and the GEI as a sum of interpretation procedures 

hold as for model (1). Because genotypic scores now 

describe genotypic main effects G and GEI together, this 

type of model is also known as the "GGE model" and the 

Biplots are called "GGE Biplots" (Yan et al., 2000). The 

model reads: 

  

   …..(6) 

 In GGE, the result of SVD is often presented in a 

"Biplot illustration". Its approximate overall performance 

(G + GEI). 

Mixed Model 

 The REML/BLUP method allows the 

consideration of different structures of variance and 

covariance for the genotypes by environments effects, 

which makes the model more realistic. For the GEI 

evaluation by mixed model, the following statistical 

model was used: 

  …..(7) 

 Where, y is the vector of observed data; α is the 

vector of genotype effects (assumed as random); β is 

the vector of block effects within each environment 

(assumed as fixed); β is the vector of GEI effect 

(assumed as random); and Ԑ is the error vector 

(random). The uppercase letters represent the matrices 

of incidence for the referred effects. The distribution of 

the random effects were: 

 

 

Setting up Monte Carlo Experiment  

 We simulate two-way data tables for balanced 

and unbalanced design with 3 replications each, where 

the interaction is explained by two multiplicative terms 

(i.e. two IPCs; k = 2 components to be retained). 

Without loss of generality, the two-way data tables are 

simulated in the following way: 

Balance Design 

Create a matrix X with (NxP) data design; 

(3x3) data design, where n = 3 rows (Genotypes) and           

p = 3 columns (Environments) 

(7x7) data design, where n = 7 rows (Genotypes) and          

p = 7 columns (Environments). 

(10x10) data design, where n = 10 rows (Genotypes) 

and p = 10 columns (Environments). 

with observations drawn from a Unif [0, 0.5] 

distribution. 

Do the SVD of X and obtain the matrices U, V and D, 

containing, respectively, the left and right singular 

vectors and the singular values of X; 

Simulate the grand mean, the genotypic and 

environmental main effects, considering: μ ~ N(15,3)  α 

~ N(5,1)  and β ~ N(8,2) (Rodrigues et al.(2015)). 

Unbalanced Design 

Create a matrix X with (NxP) data design; 

(3x7)data design, where n = 3 rows (Genotypes) and              

p = 7 columns (Environments) 

(7x3)data design, where n = 7 rows (Genotypes) and               

p = 3 columns (Environments). 

(7x10) data design, where n = 7 rows (Genotypes) and 

p = 10 columns (Environments). 

(10x7) data design, where n = 10 rows (Genotypes) and 

p = 7 columns (Environments). 

 with observations drawn from a Unif[0, 0.5] 

distribution. 

Do the SVD of X and obtain the matrices U, V and D, 

containing, respectively, the left and right singular 

vectors and the singular values of X; 

Simulate the grand mean, the genotypic and 

environmental main effects, considering: μ ~ N(15,3)  α 

~ N(5,1)  and β ~ N(8,2)   (Rodrigues et al.(2015)). 

 

y Z X W   = + + +

, , ,

1

N

ij j n n i n j i j ij

n

y e     
=

= + + + +
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Results and Discussion 

Model Stability and Adaptability 

Balance Design 

 Comparison of stability of different models using 

different stability parameters 

 Table 1 shows the model stability for balance 

design of which we observed that among all the models, 

AMMI and FW are the most stable models for 7X7 

simulated design showing the highest stability ranked 

mean of 24.18 and regression coefficient deviation from 

1 respectively. Similarly, on the same table, GGE and 

mixed model claimed to be stable at 3X3simulated 

design. That is, the complete GGE model contained 

98.5% of the Sum of Square, and the residual 1.5%. 

Also, the Mixed Model showed the lowest ranked 

stability variance (i.e.σ2 = 1.919)). 

 The biplot analysis system showing in Figure 2 

are the visual inspection plots that show the most 

adaptable models.  

 Therefore, it was observed that the closer the 

concentric circles to the center point, the more 

adaptable the models. Similarly, in the second plot, the 

closer the model to the thick blue arrow line, the more 

adaptable the model. It can be deduced that from the 

balance design simulated data, AMMI model is more 

stable and better adaptable. 

Unbalance Design 

Comparison of Stability of Different Models Using 

Different Stability Parameters 

 Table 2 shows the model stability for Unbalance 

design of which we observed that among all the models, 

AMMI and FW are the most stable models for 7X3 

simulated design showing the highest stability ranked 

mean of 24.5 and regression coefficient deviation from 1 

respectively. Similarly, on the same table, GGE and 

mixed model claimed to be stable at 3X7 and 7X10 

simulated design. That is, the complete GGE model 

contained 94.5% of the Sum of Square, and the residual 

5.5%. Also, the Mixed Model showed the lowest ranked 

stability variance (i.e. σ2 = 28.19). 

 In the same vein, the biplot analysis system 

showing in Figure 3 are the visual inspection plots that 

show the most adaptable models. Therefore, it was 

observed that the closer the concentric circles to the 

center point, the more adaptable the models. Similarly, 

in the second plot, the closer the model to the thick blue 

arrow line, the more adaptable the model. It can be 

deduced that from the Unbalance design simulated data, 

AMMI model is more stable and better adaptable. 

Conclusion 

 In this study, efforts were made to solve these 

problems under different level of data occurrence. We 

employed the simulation process of Monte Carlo in 

generating since use of a real-life data may pose a 

serious difficulty. 

 In this research work, we simulated for two data 

Types of balance and unbalance designs with different 

Levels of generations (3X3, 7X7, 10X10 and 3X7, 7X3, 

7X10, 10X7  respectively). 

The findings revealed that, when the assumption was 

maintained, AMMI outperformed Finlay-Wilkinson model, 

GGE Biplot model and Mixed model. We therefore check 

the performance of GXEinteraction on four different 

models (AMMI, FW, GGE and Mixed model), and also 

their stability and adaptability.  

Balance Design  AMMI FW GGE Mixed Model 

Design Mean ASV Rank bt Rank IPCs Rank σԐ
2
 Rank 

3X3 18.73 16.80 2 -0.8375 2 98.5% 1 1.919 1 

7X7 24.18 6.08 1 -1.6375 1 79.7% 2 28.29 2 

10X10 23.70 3.86 3 -0.7419 3 67.5% 3 25.57 3 

Table 1. Model stability for Balance simulated data design 
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Figure 2. Model Adaptability for Balance Design 

Figure 3. Model Adaptability for Unbalance Design 

Unbalance Design AMMI FW GGE Mixed Model 

Design Mean ASV Rank bt Rank IPCs Rank σԐ
2
 Rank 

3X7 23.15 23.19 2 -0.7079 4 94.5% 1 30.42 3 

7X3 24.5 3.17 1 -4.4698 1 62.3% 4 47.78 4 

10X7 22.83 4.34 3 -1.0957 3 81.9% 2 30.18 2 

7X10 21.90 2.43 4 -1.4761 2 72.5% 3 28.19 1 

Table 2. Model stability for Unbalance simulated data design 
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Balance RMSE MSE Abs. Bias 

Data Design AMMI FW GGE 
Mixed 

Model 
AMMI FW GGE 

Mixed 

Model 
AMMI FW GGE 

Mixed 

Model 

3X3 Data 
1.131

2 
1.2218 

1.787

4 
1.1374 

0.037

0 

1.919

4 

1.919

0 
1.2938 

0.631

9 

4.45

65 

2.56

17 
0.7907 

7X7 Data 
2.723

3 
4.9308 

4.712

0 
4.3430 

18.21

20 

26.87

17 

28.29

20 
22.2025 

0.393

1 

3.02

06 

2.31

56 
2.4673 

10X10 Data 
2.967

2 
4.8729 

4.704

4 
4.1288 

23.48

50 

25.44

14 

25.57

10 
23.1311 

0.298

2 

3.66

05 

2.10

24 
1.8547 

Unbalance RMSE MSE Abs. Bias 

Data Design AMMI FW GGE 
Mixed 

Model 
AMMI FW GGE 

Mixed 

Model 
AMMI FW GGE 

Mixed 

Model 

3X7 Data 
4.041

4 
5.8680 

4.795

7 
4.5036 

27.10

70 

38.05

86 

30.42

40 
22.9984 

0.903

7 

4.88

29 

3.18

56 
2.7243 

7X3Data 
3.666

6 
6.4907 

6.419

9 
5.6436 

39.11

70 

54.16

60 

47.77

60 
41.2155 

0.819

9 

5.65

84 

1.92

36 
2.5613 

10X7Data 
2.160

1 
4.7352 

4.996

7 
5.6436 

24.22

70 

24.78

19 

28.19

30 
24.9669 

0.260

0 

3.67

62 

3.20

05 
1.7961 

7X10 Data 
3.069

5 
5.2520 

5.148

2 
5.6436 

27.81

10 

29.55

36 

30.18

00 
28.5039 

0.369

5 

4.49

30 

3.25

65 
1.9173 

Table 3. Model Evaluation of Balance and Unbalance simulated data design 

Figure 4. Simulated data rank performance 
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 Finally, the study has clearly shown that the four 

models considered detects the GXE interaction effect in 

a different way. We were able to evaluate and described 

GXE interaction performance by their stability and 

adaptability using multi-location trials. Also, this study 

confirmed the suitability of AMMI in detecting GXE when 

the assumptions are maintained or kept. That is, when 

outlier is not influential, AMMI can be used. (Table 3, 

Figure 4). 
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