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Summary 

 Cardiovascular disease is actually a major cause of mortality, illness and hospitalization worldwide. Several risk fac-

tors have been identified that are strongly associated with the development of cardiovascular disease. Public prevention strat-

egies have relied predominately on managing environmental factors that contribute to  cardiovascular disease, such as obesi-

ty, smoking and lack of exercise. The understanding of the role of genetics in cardiovascular disease development has become 

much more important to link genetics with the onset of disease and response to therapy. This seeks to examine how genes 

can predispose individuals to cardiovascular disease and how this knowledge might be applied to more comprehensive pre-

ventive strategies in the future. In addition, the review explores possibilities for genetics in cardiovascular disease treatment, 

particularly through the use of identified driver genes and gene therapy. To fully understand the biological implications of 

these associations, there is a need to relate them to the exquisite, multilayered regulation of protein expression and regulato-

ry elements, mutation, microRNAs and epigenetics. Understanding how the information contained in the DNA relates to the                   

operation of these regulatory layers will allow us not only to better predict the development of cardiovascular disease but 

also to develop more effective therapies. 
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Introduction 

 Cardiovascular diseases (CVDs) are a group of 

diseases of the heart and blood vessels. CVDs are the 

leading cause of death worldwide [1, 2]. For example, 1 

in 3 deaths in the United States are caused by CVDs [1]. 

In Europe alone, CVD causes over 4.3 million deaths 

each year [3]. It is also responsible for an estimated 

17.5 million deaths in 2005, representing 30% of all 

deaths [4]. [5] stated that 30% of all global death was 

attributed to cardiovascular disease. Despite South 

Asian subcontinent accounts only 20% of the world's 

population, the CVDs burden is estimated at 60% of the 

world's CVDs. This may be attributed to a combination 

of genetic predisposition and environmental factors [6]. 

 The pathogenesis of CVDs is complex,                  

influenced by genetic, environmental and lifestyle 

factors [7], despite significant disparities related to                             

socio-economic strata and gender [8]. Different fields of 

cardiovascular medicine has been dramatic              

progress in diagnosis, prevention and treatment [9, 10], 

which in turn reduced global and cause-specific                      

mortality [11-13].  

 Epigenetics has been initially studied in CVD 

patients for its prominent role in inflammation and 

vascular involvement [14, 15]. Furthermore, epigenetic 

studies in cardiovascular medicine revealed a significant 

number of modifications affecting the development and 

progression of CVD. In addition, epigenomics are also 

involved in cardiovascular risk factors such as             

smoking [16, 17], diabetes, hypertension [18], high 

cholesterol [3] and age [19]. 

 Even though substantial advances in medical 

management, prognosis of CVD remains poor, and 

identification of mechanisms and potential therapeutic 

approaches are still a priority of considerable                

importance [3].  

 However, studies of CVD heritability are              

confounded by the fact that several other risk factors, 

such as blood pressure, lipid levels and diabetes, are 

themselves under genetic control [20]. Nonetheless, 

several studies have noted that family history is an 

independent risk factor [21].  

 CVDs are studied in a mechanistic, genetic and 

biochemical contexts that include genomic [22], gene 

expression and proteomic studies [23].  

Therefore, the Objectives of this Review Paper Were 

• To review research findings and facts on regulation 

mechanisms of candidate genes for human              

cardiovascular diseases  

• To review nature and prevalence of cardiovascular 

diseases and its types for human. 

Literature Review 

Nature and Prevalence of Cardiovascular Diseases 

 The most prevalent CVDs include ischaemic 

heart disease (heart attack), cerebrovascular disease 

(stroke), hypertension, inflammatory heart disease and 

rheumatic heart disease in that order of prevalence 

[24]. These five major CVDs are linked to over 16 

million deaths annually, with heart attacks alone affect-

ing 12.7% of the global population, followed by stroke, 

which affects 9.6% of the global population. The 

numbers of CVD associated deaths per year are much 

higher in certain regions than others which were 

1,106,000, 1,760,000 and 503,000 per year in Americas, 

Europe and Africa respectively [24].  

Types of cardiovascular Disease 

 Cardiovascular disease includes coronary artery 

diseases (CAD) such asangina and myocardial                

infarction (commonly known as a heart attack) [2]. 

Other CVDs include stroke, heart failure,                 

hypertensive heart disease, rheumatic heart disease, 

cardiomyopathy, heart arrhythmia, congenital heart 

disease (CHD), valvular heart disease, carditis, aortic 

aneurysms, peripheral artery disease, thromboembolic 

disease, andvenous thrombosis [25].  

 CHD is one of CVD which is the most common 

type of birth defect, affecting 1% of all live births, and is 

the leading non-infectious cause of death in the first 

year of life [26]. It has been recognized that                             

environmental factors during fetal development            

increase risk of CHD, including viral infections with 

rubella [27], chemical teratogens like retinoic acid, 

lithium, dilantin [28] and halogenated hydrocarbon [29] 

and maternal diseases including diabetes and systemic 

lupus erythematosus [30].  
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 In humans, heart development begins at 15 to 

16 days of gestation with the migration of precardiac 

stem cells, in five steps:(1) migration of precardiac cells 

from the primitive streak and assembly of the paired 

cardiac crescents at the myocardial plate, (2)                  

coalescence of the cardiac crescents to form the                

primitive heart tube, establishing the definitive heart, (3) 

cardiac looping, assurance of proper alignment of the 

future cardiac chambers, (4) septation and heart  

chambers formation, and (5) development of the cardiac 

conduction system and coronary vasculature [31, 32].  

 The establishment of left-right asymmetry is 

very important to the normal development of heart [33]. 

Secreted FGF, BMP, Nodal, and Wnt act as input signal 

of symmetric cardiac morphogenesis, BMP2, FGF8, Shh/

Ihh, and Nodal function as positive regulators, whereas 

Wnt and Ser are negative regulators [34, 35]. The 

cardiogenic plate-specific expressed genes NKX2.5, SRF, 

GATA4, TBX5, and HAND2, compose the core regulatory 

network of cardiac morphogenesis, controlling heart 

looping, left-right symmetry and chambers formation. 

SRF regulates the differentiation of coronary vascular 

smooth muscle cells [36].  

 Specific genes such as the NOTCH receptor, 

Jagged (JAG), WNT, transforming growth factor beta 2 

(TGF ß2) and bone morphogenic proteins have been 

implicated in cardiac neural crest development in the 

mouse [37]. Complex signal pathways are implicated in 

the crosstalk between endocardium and myocardium to 

form endocardial cushion and heart valves, including 

VEGF, NFATc1, Notch, Wnt/ß-catenin, BMP/TGF-ß, EGF, 

erbB, NF1 signal pathways [32, 38]. Foxn4 driver gene is 

expressed in the atrioventricular canal and binds to a 

tbx2 enhancer domain to drive transcription of tbx2b in 

the atrioventricular canal defects frequent in                   

humans [39].  

 Mutation in FBN1 gene encoding extracellular 

matrix protein fibrillin 1, responsible for Marfan’s                  

syndrome [40]. When a specific mutation in the fibrillin 

1 (FBN1) gene causes Marfan’s syndrome in a family, 

carriers of the same mutation can display variable 

clinical manifestations [41]. 

 However, more recent studies suggest that 

microfibrils normally bind the large latent complex of the 

cytokine transforming growth factor β (TGF-β) and that 

failure of this event to occur results in increased TGF-β 

activation and signaling. Now, investigators are              

exploring the hypothesis that blocking TGF-β signaling 

will ameliorate the growth of aortic aneurysms in 

Marfan’s syndrome. 

 For further examples of therapeutic approaches 

derived from the study of Mendelian disorders, we refer 

the reader to a recent review on this topic [42]. 

 Rare mutations in FBN1 cause the thoracic aortic 

aneurysms and dissections seen in Marfan’s syndrome, 

whereas common SNPs in the introns of FBN1 are the 

top association result in a GWAS for spontaneous,                

non-syndromic thoracic aortic aneurysm and dissection 

[43]. Rare mutations in SCN5A, KCNQ1, KCNH2, KCNE1, 

and KCNJ2 cause monogenic long QT syndrome, where-

as common SNPs in these five genes are associated with 

QT interval measured on electrocardiograms in the 

population [44]. 

Coronary Artery Disease (CAD) 

 PTPRC, FYB and FCER1G have been identified as 

key drivers of an inflammatory gene signature                 

underlying multiple diseases (including CAD) [45]. Key 

driver genes such as SGK1, SIK1 and SLC10A6 (sodium 

metabolism and hypertension), MT2A and TSC22D3 

(glucocorticoid signaling), GADD45G, ERRFI1, GPRC5A, 

and EGFR (cell growth and apoptosis), and CEBPB, 

CEBPD, and KCNA5 (heart development and                 

function) [46]. 

 MEF2A disease-causing gene for CAD and MI is 

highly expressed in the endothelium susceptible to 

inflammation and the formation of an atherosclerotic 

plaque, which may result in thrombosis, MI, and sudden 

death [47]. 

 Familial combined hyperlipidemia (FCHL) is 

present in patients of CAD which is elevated serum total 

cholesterol or triglycerides. USF1 encodes a                    

transcriptional factor belonging to the basic                       

helix-loophelix leucine zipper family and regulates genes 

involved in glucose and lipid metabolism, including 

ABCA1 and apolipoproteins CIII, AII, and E [48]. Also 

dysregulated biological processes such as cholesterol 

metabolism and transport can eventually lead to               

CAD [49].  
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Cerebrovascular Disease (Stroke) 

 The work that reported a positive association 

between a mutation of human ANP gene and the risk of 

stroke [50]. CREBBP gene is mentioned in connection 

with pathophysiological changes in cerebral vessels 

predisposing to stroke [51].  

 There are associations of migraine and stroke 

with NOS3, EDN and EDNRB regulatory genes [52]. A 

candidate gene can be suggested as possibly related to 

variation in stroke risk. In addition PDE4D6 gene is 

associated with cardiovascular disease [53].  

 Some findings have been reported that HDAC9 

associated with large vessel disease [54] and PITX2 and 

ZFHX3 related to car-dioembolic stroke [55] and a PITX2 

variant and cardioem-bolic stroke [54]. ANP is a well-

known physiologically important cardiovascular peptide 

that exerts natriuretic, diuretic, and vasorelaxant proper-

ties, and it is expressed in cardiac and cerebral tissues 

[56]. In the search for stroke-related genes, another 

experimental model was investigated, the SHR with 

MCAO-induced ischemic stroke [57]. 

Rheumatic Heart Disease (RHD) 

 Polymorphisms within the promoter region of 

the FCN2 gene are associated with plasma levels of this 

protein in chronic RHD patients and probably prolong 

the time of infection or repeated streptococcal                

infections [58]. 

 The interleukin 1 (IL-1) gene cluster located on 

chromosome 2 includes the genes expressing the 

proinflammatory cytokines IL-1a and IL-1b and their 

inhibitor IL-1 receptor antagonist (IL-1RA). The ratio of 

IL-1RA to IL-1 is important in determining the duration 

and intensity of the inflammatory response [59]. The 

absence or misrepresentation of two alleles of VNTR 

from the IL-1RA gene results in a strong inflammatory 

response. RHD patients with severe carditis had low 

frequencies of one of these alleles, suggesting the 

absence of inflammatory control [60]. 

 Mannose-binding lectin is encoded by MBL2 

gene, located on the chromosome [61]. It is considered 

an acute-phase reactant [62], whose levels can increase 

up to threefold during the acute-phase response, mainly 

due to up-regulation by acute-phase mediators [63].  

MBL2 is a highly polymorphic gene, exhibiting variants 

responsible for large variations in both MBL levels and 

functional activity [64].  

Cardiomyopathy 

 It is shown that dilated cardiomyopathy tissues 

contain elevated levels of p53 and its regulators MDM2 

and HAUSP compared to non-failing hearts [65]. Also, 

regulation of MDM2 is critical in cardiac endocardial 

cushion morphogenesis during heart development [66]. 

It is also shown that GRB2 plays a role in the signaling 

pathway for cardiac hypertrophy and fibrosis [67].  

 Inhibition of SMAD2 phosphorylation preserves 

cardiac function during pressure overload [68]. JUN 

gene is linked to different types of mitral valvular 

disease (MVD), including mitral regurgitation (MR) and 

mitral stenosis (MS) [69]. It is shown that c-Jun mRNA 

are upregulated in patients with MS compared with 

those with MR and that phosphorylated c-Jun N-terminal 

kinase in the MR group of patients is significantly greater 

than that in the MS group.  

Congenital Heart Disease (CHD) 

Mutations in components of the cardiac gene network 

cause of CHD 

 Heart development is controlled by a highly 

conserved network of transcription factors that connect 

signaling pathways with genes of muscle growth, 

patterning, and contractility. The core transcription 

factor network consists of NKX2, MEF2, GATA, TBX, and 

Hand. Dozens of other transcription factors contribute to 

cardiogenesis, in many cases by serving as accessory 

factors for these core regulators. Autoregulatory and 

cross regulatory of the cardiac gene network maintain 

the cardiac phenotype once the network has been 

activated by upstream inductive signals. Mutations in 

components of the cardiac gene Network cause          

CHD [70, 71]. For example, mutations in NKX2.5 cause a 

spectrum of CHDs, including atrial septal diseases 

(ASDs), ventral septal diseases (VSDs), and cardiac 

conduction abnormalities [72]. In addition, mutations in 

TBX5 cause the congenital disease Holt–Oram             

syndrome, which is characterized by truncations of the 

upper limbs and heart malformations [73]. 

Regulatory Pathway of Cardiac Genes 

 In mammals, four Notch family receptors have 
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been described: NOTCH1 up to NOTCH4; Notch ligands 

are encoded by the Jagged (JAG1 and JAG2) and              

Delta-like (DLL1, DLL3 and DLL4) gene families [37].  

 The formation of bicuspid aortic valve might 

reflect the role of Notch signaling in regulating the 

epithelial-mesenchymal transition required for the 

generation of the heart valves [37, 74]. Recently, 

mutations in Notch1 in humans have been shown to 

cause aortic valve defects Additionally, mutations in 

various Notch signaling pathway genes, including 

Jagged1, mind bomb 1, Hesr1/Hey1, and Hesr2/Hey2, 

result I cardiac defects, such as pericardial edema, atrial 

and ventricular septal defects, cardiac cushion, and 

valve defects [75, 76]. 

 MicroRNA Dysfunction 

 MicroRNAs are natural, single-stranded,                   

non–protein-coding small RNA molecules (～22              

nucleotides) that regulate gene expression by binding to 

target mRNAs and suppress its translation or initiate its 

degradation [77]. For example, miR-1 and miR-133 

control cardiac and skeletal muscle development [78, 

79]. Both genes are under the control of serum response 

factor, indicating that they are part of a developmental 

program regulated by cardiac transcription factors. It 

has been shown that miR-1 targets the cardiac               

transcription factor HAND2. Deletion of miR-1-2 results 

in heart defects that include VSDs; surviving mice have 

conduction system defects and increased cardiomyocyte 

proliferation. Dysregulation of miRNAs might result in 

congenital heart disease in human [80]. 

Epigenetics 

 Epigenetics refers to DNA and chromatin                    

modifications that play a critical role in regulation of 

various genomic functions, cell differentiation and 

embryonic morphogenesis [81, 82]. In epigenetic, 

phenotypic differences in monozygous twins could result 

from their epigenetic differences. BAF60C (also known 

as SMARCD3), a subunit of Swi/Snf-like                   

chromatin-remodelling complex BAF, physically links 

cardiac transcription factors to the BAF complex. Loss of 

BAF60C results in severe defects in cardiac                   

morphogenesis and impaired activation of a subset of 

cardiac genes. The muscle-restricted histone                 

methyltransferase SMYD1 (also known as BOP) is a 

crucial regulator of cardiac chamber growth and                

differentiation. Histone deacetylases have mostly been 

characterized as having an important role in heart 

hypertrophy and development [37]. 

Conclusion 

 Cardiovascular diseases are very important to 

control since it causes high mortality and morbidity. 

Gene prediction by different molecular markers such as 

SNP in genomics, proteomics level that has identified 

important new genes involved in various forms of 

cardiovascular disease. Biological validation and medical 

exploitation of this predictions, as well as                

characterization of key mechanisms responsible for 

disease formation and progression, are subjects of 

future research.  
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