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Distinguish Thyroid Malignant from Benign Alterations using Trace  
Element Contents in Nodular Tissue determined by Neutron                    

Activation and Inductively Coupled Plasma Mass Spectrometry 

Methods 

 Contents of TEs such as silver (Ag),                   

aluminum (Al),  boron (B),, beryllium (Be), bismuth 

(Bi), cadmium (Cd), cerium (Ce), cobalt (Co),                   

chromium (Cr), cesium (Cs), iron (Fe), gallium (Ga), 

mercury (Hg), iodine (I), lanthanum (La), lithium (Li), 

manganese (Mn), molybdenum (Mo), neodymium 

(Nd), nickel (Ni), lead (Pb), praseodymium (Pr),           

rubidium (Rb), antimony (Sb), scandium (Sc),                     

selenium (Se), samarium (Sm), tin (Sn), thallium (Tl), 

uranium (U), yttrium (Y), and zinc (Zn) were                     

prospectively evaluated in nodular tissue of thyroids 

with TBN (79 patients) and to TMN (41 patients). 

Measurements were performed using a combination 

of non-destructive instrumental neutron activation 

analysis with high resolution spectrometry of                 

short- and long-lived radionuclides (INAA-SLR and 

INAA-LLR, respectively) and destructive method such 

as inductively coupled plasma mass spectrometry 

(ICP-MS).  

Results 

 It was observed that in TMN tissue the mean 

mass fractions of Be, Fe, I, Sc, and Se are                              

approximately 1.9, 1.7, 14, 3.1, and 1.6 times,            

respectively, lower while the mass fraction of Ga, Mo, 

and Rb 62%, 51%, and 33%, respectively, higher than 
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Abstract 

Background 

 Thyroid benign (TBN) and malignant 

(TMN) nodules are a common thyroid lesion. The 

differentiation of TMN often remains a clinical 

challenge and further improvements of TMN            

diagnostic accuracy are warranted. The aim of  

present study was to evaluate possibilities of using 

differences in trace elements (TEs) contents in 

nodular tissue for diagnosis of thyroid malignancy. 
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those in TBN tissue. Contents of Ag, Al, B, Bi, Cd, Ce, Co, Cr, 

Cs, Hg, La, Li, Mn, Nd, Ni, Pb, Pr, Sb, Sm, Sn, Tl, U, Y, and Zn 

found in the TBN and TMN groups of nodular tissue sam-

ples were similar. 

Conclusions 

 It was proposed to use the I mass fraction, as well 

as I/Ga, I/Mo, and I/Rb mass fraction ratios in a                   

needle-biopsy of thyroid nodules as a potential tool to   

diagnose thyroid malignancy. Further studies on larger 

number of samples are required to confirm our findings 

and proposals. 

Introduction 

 Nodules are a common thyroid lesion, particularly 

in women. Depending on the method of examination and 

general population, thyroid nodules (TNs) have an                

incidence of 19–68% [1]. In clinical practice, TNs are           

classified into benign (TBN) and malignant (TMN), and 

among all TNs approximately 10% are TMN [2]. It is           

appropriate mention here that the incidence of TMN is 

increasing rapidly (about 5% each year) worldwide [2]. 

Surgical treatment is not always necessary for TBN     

whereas surgical treatment is required in TMN. Thus,             

differentiating TBN and TMN will have a great influence 

on thyroid therapy. 

 Ultrasound scan (USS) examination is widely used 

as the primary method for early detection and diagnosis of 

the TNs. However, there are many similarities in the USS 

characteristics of both TBN and TMN. For misdiagnosis 

prevention some computer-diagnosis systems based on 

the analysis of USS images were developed, however as 

usual these systems for the diagnosis of TMN showed            

accuracy, sensitivity, and specificity nearly 80% [2,3]. 

Therefore, when USS examination shows suspicious signs, 

an US-guided fine-needle aspiration biopsy is advised.  

Despite the fact that fine needle aspiration biopsy has  

remained the diagnostic tool of choice for evaluation of 

USS suspicious thyroid nodules, the differentiation of TMN 

often remains a diagnostic and clinical challenge since up 

to 30% of nodules are categorized as cytologically 

“indeterminate” [4]. Thus, to improve diagnostic accuracy 

of TMN, new technologies have to be developed for clinical 

applications. However, a recent systematic review and 

meta-analysis of molecular tests in the preoperative              

diagnosis of indeterminate TNs has shown that presently 

there is no perfect biochemical, immunological, and             

genetic biomarkers to discriminate malignancy [5].                  

Therefore, further improvements of TMN diagnostic              

accuracy are warranted.   

 During the last decades it was demonstrated that 

besides iodine deficiency and excess many other dietary, 

environmental, and occupational factors are associated 

with the TNs incidence [3,6-11]. Among these factors a 

disturbance of evolutionary stable input of many trace 

elements (TEs) in human body after the industrial                    

revolution plays a significant role in etiology of TNs [12]. 

Besides iodine, many other TEs have also essential                  

physiological role and involved in thyroid functions [13]. 

Essential or toxic (goitrogenic, mutagenic, carcinogenic) 

properties of TEs depend on tissue-specific need or               

tolerance, respectively [13]. Excessive accumulation or an 

imbalance of the TEs may disturb the cell functions and 

may result in cellular proliferation, degeneration, death, 

benign or malignant transformation [13-15].     

 In our previous studies the complex of in vivo and 

in vitro nuclear analytical and related methods was                   

developed and used for the investigation of iodine and 

other TEs contents in the normal and pathological                

thyroid [16-22]. Iodine level in the normal thyroid was 

investigated in relation to age, gender and some                       

non-thyroidal diseases [23,24]. After that, variations of 

many TEs content with age in the thyroid of males and 

females were studied and age- and gender-dependence of 

some TEs was observed [25-41]. Furthermore, a                  

significant difference between some TEs contents in               

colloid goiter, thyroiditis, thyroid adenoma, and cancer in 

comparison with normal thyroid and thyroid tissue                

adjacent to TNs was demonstrated [42-51].   

 The present study had two aims. The main          

objective was to assess the silver (Ag), aluminum (Al),  

boron (B), beryllium (Be), bismuth (Bi), cadmium (Cd), 
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cerium (Ce), cobalt (Co), chromium (Cr), cesium (Cs), iron 

(Fe), gallium (Ga), mercury (Hg), iodine (I), lanthanum 

(La), lithium (Li), manganese (Mn), molybdenum (Mo), 

neodymium (Nd), nickel (Ni), lead (Pb), praseodymium 

(Pr), rubidium (Rb), antimony (Sb), scandium (Sc),                

selenium (Se), samarium (Sm), tin (Sn), thallium (Tl),            

uranium (U), yttrium (Y), and zinc (Zn) contents in              

nodular tissue of patients who had either TBN or TMN 

using a  combination of non-destructive instrumental  

neutron activation analysis with high resolution                    

spectrometry of short- and long-lived radionuclides (INAA

-SLR and INAA-LLR, respectively) and destructive method 

such as inductively coupled plasma mass spectrometry 

(ICP-MS). The second aim was to compare the levels of 

TEs in TBN and TMN and to evaluate possibilities of using 

TEs differences for diagnosis of thyroid malignancy.  

Material and Methods 

 All patients suffered from TBN (n=79, mean age 

M±SD was 44±11 years, range 22-64) and from TMN 

(n=41, mean age M±SD was 46±15 years, range 16-75) 

were hospitalized in the Head and Neck Department of the 

Medical Radiological Research Centre (MRRC), Obninsk. 

Thick-needle puncture biopsy of suspicious nodules of the 

thyroid was performed for every patient, to permit                

morphological study of thyroid tissue at these sites and to 

estimate their TEs contents. In all cases the diagnosis has 

been confirmed by clinical and morphological results             

obtained during studies of biopsy and resected materials. 

Histological conclusions for TBN were: 46 colloid goiter, 

19 thyroid adenoma, 8 Hashimoto's thyroiditis, and 6 

Riedel’s Struma, whereas for TMN were: 25 papillary             

adenocarcinomas, 8 follicular adenocarcinomas, 7 solid 

carcinomas, and 1 reticulosarcoma. Samples of nodular 

tissue for TEs analysis were taken from both biopsy and 

resected materials. 

 All studies were approved by the Ethical                   

Committees of MRRC. All the procedures performed in 

studies involving human participants were in accordance 

with the ethical standards of the institutional and/or             

national research committee and with the 1964 Helsinki 

declaration and its later amendments, or with comparable 

ethical standards. Informed consent was obtained from all 

individual participants included in the study. 

 All tissue samples obtained from TBN and TMN 

were divided into two portions using a titanium scalpel to 

prevent contamination by TEs of stainless steel [52]. One 

was used for morphological study while the other was 

intended for TEs analysis. After the samples intended for 

TEs analysis were weighed, they were freeze-dried and 

homogenized [53].  

 To determine contents of the TEs by comparison 

with a known standard, biological synthetic standards 

(BSS) prepared from phenol-formaldehyde resins were 

used [54]. In addition to BSS, aliquots of commercial, 

chemically pure compounds were also used as standards. 

Ten sub-samples of certified reference material (CRM) 

IAEA H-4 (animal muscle) and five sub-samples of CRM of 

the Institute of Nuclear Chemistry and Technology (INCT, 

Warszawa, Poland) INCT-SBF-4 Soya Bean Flour, INCT-TL-

1 Tea Leaves, and INCT-MPH-2 Mixed Polish Herbs were 

treated and analyzed in the same conditions like thyroid 

samples to estimate the precision and accuracy of results . 

 The content of I were determined by INAA-SLR 

using a horizontal channel equipped with the pneumatic 

rabbit system of the WWR-c research nuclear reactor 

(Branch of Karpov Institute, Obninsk). Details of used             

nuclear reaction, radionuclide, gamma-energies,                 

spectrometric unit, sample preparation, and the quality 

control of results were presented in our earlier                 

publications concerning the INAA-SLR of I contents in   

human thyroid [27,28] and scalp hair [55].  

 A vertical channel of the same nuclear reactor was 

applied to determine the content of Ag, Co, Cr, Fe, Hg, Rb, 

Sb, Sc, Se, and Zn by INAA-LLR. Details of used nuclear 

reactions, radionuclides, gamma-energies,  spectrometric 

unit, sample preparation and procedure of measurement 

were presented in our earlier publications concerning the 

INAA-LLR of TEs contents in human thyroid [29,30], scalp 

hair [55], and prostate [56-59]. 

 After non-destructive INAA-LLR investigation the 

thyroid samples were used for ICP-MS. The samples were 
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decomposed in autoclaves and aliquots of solutions were 

used to determine the Ag, Al, As, Au, B, Be, Bi, Cd, Ce, Co, 

Cr, Cs, Dy, Er, Eu, Ga, Gd, Hg, Ho, Ir, La, Li, Lu, Mn, Mo, Nb, 

Nd, Ni, Pb, Pd, Pr, Pt, Rb, Sb, Se, Sm, Sn, Tb, Te, Th, Ti, Tl, 

Tm, U, Y, Yb, Zn, and Zr mass fractions by ICP-MS using an 

ICP-MS Thermo-Fisher “X-7” Spectrometer (Thermo             

Electron, USA). Information detailing with the NAA-LLR 

and ICP-MS methods used and other details of the analysis 

were presented in our earlier publications concerning TE 

contents in human thyroid {29,30,35], prostate [60-62], 

and scalp hair [55]. 

 A dedicated computer program for INAA-SLR and 

INAA-LLR mode optimization was used [63]. All thyroid 

samples were prepared in duplicate, and mean values of 

TEs contents were used in final calculation. Mean values of 

TEs contents were used in final calculation for the Ag, Co, 

Cr, Hg, Rb, Sb, Se, and Zn mass fractions measured by    

INAA-LLR and ICP-MS methods. Using Microsoft Office 

Excel software, a summary of the statistics, including, 

arithmetic mean, standard deviation of mean, standard 

error of mean, minimum and maximum values, median, 

percentiles with 0.025 and 0.975 levels was calculated for 

TEs contents in two groups of nodular tissue (TBN and 

TMN). The difference in the results between two groups of 

samples was evaluated by the parametric Student’s t-test 

and non-parametric Wilcoxon-Mann-Whitney U-test. 

Results 

 Tables 1 and 2 depict certain statistical                    

parameters (arithmetic mean, standard deviation,           

standard error of mean, minimal and maximal values,                

median, percentiles with 0.025 and 0.975 levels) of the Ag, 

Al, B, Be, Bi, Cd, Ce, Co, Cr, Cs, Fe, Ga, Hg, I, La, Li, Mn, Mo, 

Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Tl, U, Y, and Zn mass 

fraction in two groups of samples - TBN and TMN,                   

respectively. 

 The ratios of means and the comparison of mean 

values of Ag, Al, B, Be, Bi, Cd, Ce, Co, Cr, Cs, Fe, Ga, Hg, I, La, 

Li, Mn, Mo, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Tl, U, Y, and 

Zn mass fractions in pair of sample groups such as TBN 

and TMN is presented in Table 3. 

 The comparison of our results with published 

data for Ag, Al, B, Be, Bi, Cd, Ce, Co, Cr, Cs, Fe, Ga, Hg, I, La, 

Li, Mn, Mo, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Tl, U, Y, and 

Zn mass fraction in TBN [64-77] and TMN [70-72,75-83] is 

shown in Tables 4 and 5, respectively. A number of values 

for TEs mass fractions were not expressed on a dry mass 

basis by the authors of the cited references. However, we 

calculated these values using published data for water 

(75%) [84] and ash (4.16% on dry mass basis) [85]               

contents in thyroid of adults.   

Discussion 

 As was shown before [27-30,55-59,60-62] good 

agreement of the Ag, Al, B, Be, Bi, Cd, Ce, Co, Cr, Cs, Fe, Ga, 

Hg, I, La, Li, Mn, Mo, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Tl, 

U, Y, and Zn contents in CRM IAEA H-4, INCT-SBF-4,             

INCT-TL-1, and INCT-MPH-2 samples determined by both 

INAA-SLR and ICP-MS methods with the certified data of 

these CRMs indicates acceptable accuracy of the results 

obtained in the study of TBN and TMN groups of tissue 

samples presented in Tables 1-5. 

 From Table 3, it is observed that in TMN tissue 

the mean mass fractions of Be, Fe, I, Sc, and Se are                  

approximately 1.9, 1.7, 14, 3.1, and 1.6 times, respectively, 

lower while the mass fraction of Ga, Mo, and Rb were 62%, 

51%, and 33%, respectively, higher than those in TBN    

tissue. In a general sense Ag, Al, B, Bi, Cd, Ce, Co, Cr, Cs, Hg, 

La, Li, Mn, Nd, Ni, Pb, Pr, Sb, Sm, Sn, Tl, U, Y, and Zn              

contents found in the TBN and TMN groups of tissue              

samples were similar (Table 3). 

 Mean values obtained for Ag, Al, Cd, Cr, Fe, I, Mn, 

Mo, Ni, Pb, Rb, Se, and Zn contents in TBN agree well with 

median of mean values reported by other researches 

(Table 4). Mean mass fractions of Co, Hg, and U in TBN 

obtained in present study were almost two order of                 

magnitude lower medians of means for these TEs in              

published articles. No published data referring B, Be, Bi,Cs, 

Ga,La, Li, Nd, Pr, Sb, Sc, Sm, Sn, Tl, and Y contents of TBN 

were found (Table 4). 

 Mean values obtained for Cd, Cr, Fe, I, Mn, Ni, Pb, 

Rb, Se, and Zn contents in TMN agree well with median of 

mean values reported by other researches (Table 5). Mean 

http://www.openaccesspub.org/
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Element M SD SEM Min Max Median P 0.025 P 0.975 

Ag 0.192 0.199 0.028 0.002 0.842 0.114 0.00218 0.699 

Al 27.3 23.6 4.2 6.6 95.1 19.5 7.07 82.2 

B 4.65 15 2.7 0.81 85.2 1 0.878 26.8 

Be 0.0009 0.00113 0.00021 0.0002 0.006 0.0005 0.0002 0.0031 

Bi 0.0706 0.0845 0.016 0.0039 0.422 0.0525 0.0089 0.282 

Cd 1.55 1.68 0.3 0.126 6.39 0.964 0.183 5.59 

Ce 0.0181 0.0176 0.003 0.0031 0.0696 0.0109 0.00351 0.0619 

Co 0.0576 0.0324 0.0045 0.015 0.159 0.0512 0.0161 0.141 

Cr 1.17 1.19 0.17 0.075 7.3 0.852 0.16 3.46 

Cs 0.032 0.0471 0.009 0.0076 0.205 0.0155 0.00807 0.174 

Fe 430 566 67 52.3 2734 206 60.4 2586 

Ga 0.0211 0.0081 0.002 0.01 0.034 0.02 0.01 0.0321 

Hg 1.15 1.04 0.14 0.1 5.2 0.968 0.131 4.37 

I 992 901 103 29 3906 695 84.8 3629 

La 0.00939 0.00882 0.002 0.0017 0.0356 0.00545 0.00208 0.0297 

Li 0.0295 0.0151 0.003 0.0073 0.068 0.0253 0.00962 0.0669 

Mn 1.81 1.41 0.21 0.1 6.12 1.44 0.454 5.48 

Mo 0.193 0.121 0.021 0.046 0.627 0.18 0.0483 0.488 

Nd 0.0134 0.0075 0.002 0.0031 0.0331 0.0114 0.00334 0.0294 

Ni 2.89 2.52 0.47 0.13 10.4 2.3 0.158 9.42 

Pb 1.31 2.27 0.41 0.12 9.3 0.49 0.12 9 

Pr 0.00389 0.00335 0.001 0.00053 0.0131 0.0032 0.00063 0.0123 

Rb 9.5 4.23 0.5 2.5 22.1 9.05 3.41 19.6 

Sb 0.121 0.108 0.015 0.00238 0.466 0.08 0.0112 0.417 

Sc 0.0239 0.0383 0.006 0.0002 0.15 0.0071 0.0002 0.135 

Se 3.2 2.92 0.39 0.72 13.8 2.27 0.93 12.4 

Sm 0.00171 0.00181 0.00032 0.0004 0.008 0.001 0.0004 0.00715 

Sn 0.0516 0.0399 0.007 0.0143 0.172 0.0368 0.016 0.161 

Tl 0.0019 0.00109 0.0002 0.00052 0.0054 0.0017 0.00063 0.00407 

U 0.00116 0.00059 0.00018 0.00038 0.0024 0.0012 0.00039 0.00222 

Y 0.011 0.0108 0.003 0.0031 0.0361 0.0052 0.00319 0.0355 

Zn 117.7 48.7 5.8 47 264 110 49.8 253 

Table 1. Some statistical parameters of 32 trace element mass fraction (mg/kg, dry mass basis) in 

thyroid benign nodules (TBN) 

M – arithmetic mean, SD – standard deviation, SEM – standard error of mean, Min – minimum value, 

Max – maximum value, P 0.025 – percentile with 0.025 level, P 0.975 – percentile with 0.975 level. 

http://www.openaccesspub.org/


                           Vol– 1  Issue 4  Pg. no.-  23 

 

©2022 Vladimir Zaichick. This is an open access article distributed under the terms of the Creative 

Commons Attribution License, which permits unrestricted use, distribution, and build upon your 

work non-commercially. 

Element M SD SEM Min Max Median P 0.025 P 0.975 

Ag 0.139 0.141 0.028 0.00750 0.536 0.0841 0.00800 0.501 

Al 33.0 25.5 7.1 4.50 96.5 21.3 5.7 85.6 

B 2.21 1.89 0.52 1.00 5.6 1.00 1.00 5.42 

Be 0.00047 0.00013 0.00004 0.000200 0.000720 0.000500 0.000225 0.000665 

Bi 0.067 0.083 0.023 0.00480 0.335 0.0471 0.00879 0.258 

Cd 1.13 1.82 0.49 0.0290 6.83 0.460 0.0322 5.55 

Ce 0.0277 0.0275 0.0080 0.00470 0.0874 0.0161 0.00476 0.0836 

Co 0.0499 0.0292 0.0050 0.00420 0.143 0.0456 0.0159 0.129 

Cr 1.85 1.81 0.15 0.0390 3.50 0.515 0.0941 3.05 

Cs 0.0298 0.0287 0.0090 0.00660 0.112 0.0223 0.00800 0.0926 

Fe 255 168 27 60.6 880 217 74.6 673 

Ga 0.0342 0.0111 0.0030 0.0200 0.0640 0.0300 0.0225 0.0578 

Hg 0.915 0.826 0.146 0.0685 3.75 0.771 0.0689 2.85 

I 71.8 62.0 10 2.00 261 62.1 2.93 192 

La 0.0134 0.0124 0.0040 0.00430 0.0443 0.00930 0.00438 0.0393 

Li 0.0315 0.0307 0.0090 0.00780 0.111 0.0182 0.00885 0.0995 

Mn 2.01 1.34 0.29 0.100 5.95 1.61 0.250 5.23 

Mo 0.292 0.112 0.031 0.0936 0.534 0.309 0.107 0.488 

Nd 0.0156 0.0143 0.0050 0.00330 0.0412 0.00940 0.00377 0.0401 

Ni 4.38 2.24 0.65 0.270 7.30 4.35 0.691 7.27 

Pb 1.14 1.16 0.33 0.240 4.44 0.850 0.262 3.77 

Pr 0.0078 0.0130 0.0040 0.000920 0.0463 0.00420 0.00102 0.0372 

Rb 12.65 4.87 0.76 5.10 27.4 12.3 5.50 21.7 

Sb 0.107 0.075 0.014 0.0160 0.334 0.0870 0.0174 0.302 

Sc 0.0077 0.0129 0.0020 0.000200 0.0565 0.00230 0.000200 0.0447 

Se 2.04 1.06 0.19 0.143 4.80 1.76 0.627 4.37 

Sm 0.00194 0.00174 0.00048 0.000500 0.00670 0.00100 0.000536 0.00574 

Sn 0.0697 0.0487 0.0140 0.0138 0.182 0.0636 0.0173 0.173 

Tl 0.00307 0.00197 0.00100 0.000600 0.00700 0.00250 0.000840 0.00685 

U 0.00514 0.01109 0.00400 0.000550 0.0326 0.00108 0.000611 0.0273 

Y 0.0123 0.0117 0.0040 0.00230 0.0343 0.00840 0.00245 0.0324 

Zn 96.9 80.0 12.6 28.7 375 69.8 36.3 374 

Table 2. Some statistical parameters of 32 trace element mass fraction (mg/kg, dry mass basis) in thyroid          

malignant nodules (TMN) 

M – arithmetic mean, SD – standard deviation, SEM – standard error of mean, Min – minimum value,                     

Max – maximum value, P 0.025 – percentile with 0.025 level, P 0.975 – percentile with 0.975 level. 
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El 
Thyroid nodules Ratio 

TBN TMN Student’s t-test, p£ U-test, p TMN / TBN 

Ag 0.192±0.028 0.139±0.028 0.178 >0.05 0.72 

Al 27.3±4.2 33.0±7.1 0.497 >0.05 1.21 

B 4.65±2.7 2.21±0.52 0.381 >0.05 0.48 

Be 0.00090±0.00021 0.00047±0.00004 0.048 ≤0.01 0.52 

Bi 0.0706±0.0160 0.0670±0.0230 0.893 >0.05 0.95 

Cd 1.55±0.30 1.13±0.49 0.472 >0.05 0.73 

Ce 0.0181±0.0030 0.0277±0.0080 0.267 >0.05 1.53 

Co 0.0576±0.0045 0.0499±0.0050 0.276 >0.05 0.87 

Cr 1.17±0.17 1.85±0.15 0.150 >0.05 1.58 

Cs 0.0320±0.0090 0.0298±0.0090 0.857 >0.05 0.93 

Fe 430±67 255±27 0.018 ≤0.01 0.59 

Ga 0.0211±0.0020 0.0342±0.0030 0.0034 ≤0.01 1.62 

Hg 1.15±0.14 0.915±0.146 0.248 >0.05 0.80 

I 992±103 71.8±10.0 0.00000001 ≤0.01 0.072 

La 0.00939±0.00200 0.0134±0.0040 0.386 >0.05 1.43 

Li 0.0295±0.0030 0.0315±0.0090 0.832 >0.05 1.07 

Mn 1.81±0.21 2.01±0.29 0.589 >0.05 1.11 

Mo 0.193±0.021 0.292±0.031 0.015 ≤0.01 1.51 

Nd 0.0134±0.0020 0.0156±0.0050 0.692 >0.05 1.16 

Ni 2.89±0.47 4.38±0.65 0.074 >0.05 1.52 

Pb 1.31±0.41 1.14±0.33 0.754 >0.05 0.87 

Pr 0.00389±0.00100 0.00780±0.00400 0.343 >0.05 2.01 

Rb 9.50±0.50 12.65±0.76 0.00093 ≤0.01 1.33 

Sb 0.121±0.015 0.107±0.014 0.556 >0.05 0.88 

Sc 0.0239±0.0060 0.0077±0.0020 0.0094 ≤0.01 0.32 

Se 3.20±0.39 2.04±0.19 0.0097 ≤0.01 0.64 

Sm 0.00171±0.00032 0.00194±0.00048 0.696 >0.05 1.13 

Sn 0.0516±0.0070 0.0697±0.0140 0.253 >0.05 1.35 

Tl 0.00190±0.00020 0.00307±0.00100 0.062 >0.05 1.62 

U 0.00116±0.00018 0.00514±0.00400 0.345 >0.05 4.43 

Y 0.0110±0.0030 0.0123±0.0040 0.808 >0.05 1.12 

Zn 117.7±5.8 96.9±12.6 0.141 >0.05 0.82 

Table 3. Differences between mean values (M±SEM) of 32 trace element mass fractions (mg/kg, dry mass 

basis) in thyroid benign (TBN) and malignant (TMN) nodules 

El – element, M – arithmetic mean, SEM – standard error of mean, p significant values are in bold. 
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Element 

  

Published data [Reference] This work 

Median 

of means(n)* 

Minimum 

of means M or M±SD, (n)** 

Maximum 

of means M or M±SD, (n)** 

Males and females 

(combined) M±SD 

Ag 0.16 (4) 0.098±0.042 (19) [64] 1.20±2.28 (51) [65] 0.192±0.199 

Al 3.84 (5) 2.45 (123) [66] 840 (25) [67] 27.3±23.6 

B - - - 4.65±15.0 

Be - - - 0.00090±0.00113 

Bi - - - 0.0706±0.0845 

Cd 0.499 (2) 0.125±0.006 (64) [68] 1.72±0.13 (9) [69] 1.55±1.68 

Ce - - - 0.0181±0.0176 

Co 0.86 (13) 0.110±0.003 (64) [68] 62.8±22.4 (11) [70] 0.0576±0.0324 

Cr 4.0 (6) 0.72 (51) [64] 146±14 (4) [71] 1.17±1.19 

Cs - - - 0.0320±0.0471 

Fe 207 (9) 54.6±36.1 (5) [72] 4848±3056 (11) [70] 430±566 

Ga - - - 0.0211±0.0081 

Hg 79.2 (1) 79.2±8.0 (4) [71] 79.2±8.0 (4) [71] 1.15±1.04 

I 812 (55) 77±14 (66) [73] 2800 (4) [74] 992±901 

La - - - 0.00939±0.00882 

Li - - - 0.0295±0.0151 

Mn 1.82 (4) 0.40±0.22 (64) [75] 57.6±6.0 (4) [71] 1.81±1.41 

Mo 0.25 (4) 0.094-0.145 (77) [64] 512±16 (11) [70] 0.193±0.121 

Nd - - - 0.0134±0.0075 

Ni 0.93 (11) 0.404 (41) [75] 19.7±20.5 (11) [70] 2.89±2.52 

Pb 0.79 (12) 0.156±0.156 (9) [69] 46.4±4.8 (4) [71] 1.31±2.27 

Pr - - - 0.00389±0.00335 

Rb 7.5 (2) 7,0 (10) [76] 864±148 (11) [70] 9.50±4.23 

Sb - - - 0.121±0.108 

Sc - - - 0.0239±0.0383 

Se 1.97 (9) 0.248 (41) [75] 174±116 (11) [70] 3.20±2.92 

Sm - - - 0.00171±0.00181 

Sn - - - 0.0516±0.0399 

Tl - - - 0.00190±0.00109 

U 0.15 (5) 0.00052 (46) [75] 0.28±0.25 (51) [65] 0.00116±0.00059 

Y - - - 0.0110±0.0108 

Zn 112 (13) 48±8 (5) [75] 494±37 (2) [77] 117.7±48.7 

Table 4. Median, minimum and maximum value of means of trace element contents in thyroid benign nodules 

(TBN) according to data from the literature in comparison with our results (mg/kg, dry mass basis)  

M –arithmetic mean, SD – standard deviation, (n)* – number of all references, (n)** – number of samples. 
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mass fraction obtained for Co and Hg in TMN were                

approximately two and one order of magnitude,                  

respectively, lower median of previously reported means. 

Mean mass fraction of U founded in TMN was almost one 

order of magnitude higher the only published result [75]. 

No published data referring Ag, Al, B, Be, Bi, Ce, Cs, Ga, La, 

Li, Mo, Nd, Pr, Sb, Sc, Sm, Sn, Tl, and Y contents of TMN 

were found (Table 5). 

 The range of means of Ag, Al, Cd, Co, Cr, Fe, I, Mn, 

Mo, Ni, Pb, Rb, Se, U and Zn level reported in the literature 

for TBN and TMN vary widely (Table 3). This can be             

explained by a dependence of TEs content on many                 

factors, including age, gender, ethnicity, mass of the TNs, 

and the stage of diseases. Not all these factors were             

strictly controlled in cited studies. However, in our                 

opinion, the leading causes of inter-observer variability 

can be attributed to the accuracy of the analytical                 

techniques, sample preparation methods, and inability of 

taking uniform samples from the affected tissues. It was 

insufficient quality control of results in these studies. In 

many scientific reports, tissue samples were ashed or 

dried at high temperature for many hours. In other cases, 

thyroid samples were treated with solvents (distilled            

water, ethanol, formalin etc). There is evidence that              

during ashing, drying and digestion at high temperature 

some quantities of certain TEs are lost as a result of this 

treatment. That concerns not only such volatile element as 

Hg, but also other TEs investigated in the study [86-88]. 

On the other hand, when destructive analytical techniques 

are used the tissue samples may be contaminated by TEs 

contained in chemicals used for digestion.  

 Trace elemental analysis of affected thyroid tissue 

could become a powerful diagnostic tool. To a large extent, 

the resumption of the search for new methods for early 

diagnosis of TMN was due to experience gained in a                   

critical assessment of the limited capacity of the                        

USS-examination [2,3]. In addition to the US test and     

morphological study of needle-biopsy of the TNs, the             

development of other highly precise testing methods 

seems to be very useful. Experimental conditions of the 

present study were approximated to the hospital                 

conditions as closely as possible. In all cases we analyzed a 

part of the material obtained from a puncture biopsy of 

the TNs. Therefore, our data allow us to evaluate                 

adequately the importance of TEs content information for 

distinguishing TMN from TBN.  

 Tissue content of Ga, Be, Fe, I, Mo, Rb, Sc, and Se 

are different in most TMN as compared to TBN (Tables 3). 

Level of I in nodular tissue has very promising prospects 

as a biomarker of malignancy, because there is a great      

difference between content of this TE in TBN and TMN 

(Tables 3). It is very interest a potential possibilities of 

using the I/Ga, I/Mo, and I/Rb ratio as cancer biomarker, 

because during the thyroid malignant transformation  

contents of these TEs in nodular tissue change in different 

directions – a drastically decrease of I and an increase of 

Ga, Mo, Rb (Tables 3). Thus, the results of study show that 

analysis of TEs contents in biopsy of TNs may serve as a 

potential tool for detection of TMN.  

 This study has several limitations. Firstly,                

analytical techniques employed in this study measure only 

thirty two TEs (Ag, Al, B, Be, Bi, Cd, Ce, Co, Cr, Cs, Fe, Ga, 

Hg, I, La, Li, Mn, Mo, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Tl, 

U, Y, and Zn) mass fractions. Future studies should be             

directed toward using other analytical methods which will 

extend the list of TEs investigated in TBN and TMN.                  

Secondly, the sample size of TBN and TMN group was            

relatively small and prevented investigations of TEs                

contents in this group using differentials like gender,     

functional activity of nodules, stage of disease, and dietary 

habits of patients with TNs. Lastly, generalization of our 

results may be limited to Russian population. Despite             

these limitations, this study provides evidence on                 

significant TEs level alteration in thyroid nodular tissue 

and shows the necessity to continue TEs research as 

potential biomarkers of thyroid malignant transformation. 

Conclusion  

 In this work, trace elemental analysis was carried 

out in the nodular tissue samples of thyroid with TBN and 

TMN using instrumental neutron activation analysis. It 

was shown that a  combination of non-destructive                   

instrumental neutron activation analysis and destructive 
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Element 

  

Published data [Reference] This work 

Median 

of means (n)* 

Minimum 

of means M or M±SD, (n)** 

Maximum 

of means M or M±SD, (n)** 

Males and females 

(combined) M±SD 

Ag - - - 0.139±0.141 

Al - - - 33.0±25.5 

B - - - 2.21±1.89 

Be - - - 0.00047±0.00013 

Bi - - - 0.067±0.083 

Cd 0.764 (1) 0.764±0.140 (5) [78] 0.764±0.140 (5) [78] 1.13±1.82 

Ce - - - 0.0277±0.0275 

Co 71.6 (3) 2.48±0.85 (18) [79] 94.4±69.6 (3) [70] 0.0499±0.0292 

Cr 2.74 (2) 1.04±0.52  (4) [77] 119±12 (4) [71] 1.85±1.81 

Cs - - - 0.0298±0.0287 

Fe 304 (8) 48.5 (2) [72] 5588±556 (4) [71] 255±168 

Ga - - - 0.0342±0.0111 

Hg 14.4 (2) 0.04±0.03 (92) [80] 30.8±3.2 (4) [71] 0.915±0.826 

I 78.8 (12) <23±10 (8) [81] 800 (1) [82] 71.8±62.0 

La - - - 0.0134±0.0124 

Li - - - 0.0315±0.0307 

Mn 1.95 (9) 0.54 (40) [75] 186±18 (4) [71] 2.01±1.34 

Mo - - - 0.292±0.112 

Nd - - - 0.0156±0.0143 

Ni 1.62 (5) 0.192 (66) [75] 30.8±2.8 (4) [71] 4.38±2.24 

Pb 2.02 (8) 0.062 (40) [75] 72 (1) [83] 1.14±1.16 

Pr - - - 0.0078±0.0130 

Rb 14.7 (2) 11,5 (10) [76] 17.8±9.7 (5) [76] 12.65±4.87 

Sb - - - 0.107±0.075 

Sc - - - 0.0077±0.0129 

Se 2.14 (11) 0.264 (66) [75] 241±296 (3) [70] 2.04±1.06 

Sm - - - 0.00194±0.00174 

Sn - - - 0.0697±0.0487 

Tl - - - 0.00307±0.00197 

U 0.00029 (1) 0.00028 (40) [75] 0.00032 (85) [75] 0.00514±0.01109 

Y - - - 0.0123±0.0117 

Zn 92.4 (20) 22.6 (85) [75] 494±37 (2) [77] 96.9±80.0 

M –arithmetic mean, SD – standard deviation, (n)* – number of all references, (n)** – number of samples. 

Table 5. Median, minimum and maximum value of means of trace element contents in thyroid malignant nodules 

(TMN) according to data from the literature in comparison with our results (mg/kg, dry mass basis)  
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method such as inductively coupled plasma mass                    

spectrometry is an adequate analytical tool for the                

determination of Ag, Al, B, Be, Bi, Cd, Ce, Co, Cr, Cs, Fe, Ga, 

Hg, I, La, Li, Mn, Mo, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Tl, 

U, Y, and Zn content in the tissue samples of human               

thyroid, including needle-biopsy material. It was observed 

that in TMN tissue the mean mass fractions of Be, Fe, I, Sc, 

and Se are approximately 1.9, 1.7, 14, 3.1, and 1.6 times, 

respectively, lower while the mass fraction of Ga, Mo, and 

Rb 62%, 51%, and 33%, respectively, higher than those in 

TBN tissue. Contents of Ag, Al, B, Bi, Cd, Ce, Co, Cr, Cs, Hg, 

La, Li, Mn, Nd, Ni, Pb, Pr, Sb, Sm, Sn, Tl, U, Y, and Zn found 

in the TBN and TMN groups of nodular tissue samples 

were similar. In our opinion, the drastically decrease in 

level I and abnormal increase in Ga, Mo, and Rb level in 

thyroid nodular tissue could be a specific consequence of 

malignant transformation. It was proposed to use the I 

mass fraction, as well as I/Ga, I/Mo, and I/Rb mass                  

fraction ratio in a needle-biopsy of thyroid nodules as a 

potential tool to diagnose thyroid malignancy. Further 

studies on larger number of samples are required to               

confirm our findings and proposals. 
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