#### **SUPPLEMENTARY MATERIAL 1**

Supplementary Material 1 contains:

1) The 214 references (literature papers) that were consulted for this research study

2) Table S2: The initial raw data, which excludes the research gaps, showing CEC class, sampling mode, matrix, analytical method, etc..

3) Table S3: The initial raw data, which details the research gaps: high level class description, actual research gap/s, and relative

frequency (number, percentage of total)

4) Table S4: Some typical classes of CECs

5) Table S5: Some of the reported matrices analysed for CECs

6) Table S6: Reported definition of a CEC and references

7) Table S7: Summary of other reported descriptions/properties for CECs

8) Table S8 ISO requirements as per ISO ISO/IEC Directives Part 2 Principles and rules for the structure and drafting of ISO and IEC documents

#### **1 REFERENCES**

The 214 references (literature papers) that were consulted for this research study:

Abbreviations: WRC: Water Research Commission

1 Wilkinson, J., Hooda, P.S., Barker, J., Barton, S., Swinden, J (2017). Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. Environmental Pollution 231: 954-970.

#### https://dx.doi.org/10.1016/j.envpol.2017.08.032

2 Bruce Petrie, Ruth Brden, B Kasprzyk-Hordern (2015).. A review on emerging contaminnats in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research 72, 3-27. http://dx.doi.org/10.1016/j.watres.2014.08.053

3 Jos van Gils, L Posthuma, IT Cousins, C Lindim, D de Zwart, D Bunke, S Kutsavora, C Muller, J Munthe, J Slobodnik, W Brack (2019) Environmental Sciences Europe 31(72): 1-8. The European Collaborative Project Solutions developed models to provide diagnostic and prognostic capacity and fill data gaps for chemicals of emerging concern. https://doi.org/10.1186/s12302-019-0248-3

4 DK Essumang, A Eshun, JN Hogarh, JK Bentum, JK Adjei, J Negishi, S Nakamichi, Md H-A-Mamun, S Msunaga (2017) Perfluoroalkyl acids in the Pra and Kakum River basins and associated tap water in Ghana. Science of the Total Environment 579: 729-735.

http://dx.doi.org/10.1016/j.scitotenv.2016.11.035

5 S-L Badea, E-I Geana, V-C Niculescu, R-E Ionete (2020) Recent progress in analytical GC and LC-MS based-methods for the detection of emerging chlorinated and brominated contaminants and their transformation products in aquatic environment. Science of the Total Environment.

https://doi.org/10.1016/j.scitotenv.2020.137914.

6 SM Praveena. MS Cheema, H-R Guo (2019) Non-nutritive artificial sweeteners as an emerging contaminant in environment: A global review and risks perspectives. Eotoxicology and Environmental Safety. 170: 699-707. http://doi.org/10.1016/j.ecoenv.2018.12.048

7 R Akhbarizadeh, S Dobaradaran, TC Schmidt, I Nabipour, J Spitz (2020) Worldwide bottled water occurrence of emerging contaminants: A review of the recent scientific literature. Journal of Hazardous Materials http://doi.org/10.1016/j.jhazmat.2020.122271 8 KO K'oreje, M Okoth, H Van Langenhove. K Demeestere (2020) Review Occurrence and treatment of contaminants of emerging concern in the African aquatic environment: Literature review and a look ahead. Journal of Environmental Management 254: 109752, 1-17.

http://doi.org/10.1016/j.jenvman.2019.109752

9 E Nilsen, KL Smalling, L Ahrens, M Gros, KSB Miglioranza, Y Pico, HL Schoenfuss (2019) Critical review: Grand challenges in assessing the adverse effects of contaminants of emerging concern on aquatic food webs. Environmental Toxicology and Chemistry, 38(1): 46-60. 2019. DOI: 10.1002/etc.4290

10 D Montes-Grajales, M Fennix-Agudelo, W Miranda-Castro (2017) Review: Occurrence of personal care products as emerging chemicals of concern in water resources. Science of the Total Environment 595: 601-614. http://dx.doi.org/10.1016/j.scitotenv.2017.03.286

11 T Rasheed, M Bilal, F Nabeel, M Adeel, HMN Iqbal (2019) Review: Environmentally- related contaminants of high concern: Potential sources and , modalities for detection, quantification, and treatment. Environment International 122: 52-66. https://doi.org/10.1016/j.envint.2018.11.038

12 A Gogoi, P Mazumder, VK Tyagi, GG T Chaminda, A K An, M Kumar (2018) Review Occurrence and fate of emerging contaminants in water environment: A review. Groundwater for Sustainable Development 6: 169-180. https://doi.org/10.1016/j.gsd.2017.12.009

13 D Gui, J He, X Zhang, Q Tu, L Chen, K Feng, W liu, B Mai, Y Wu (2018) Potential association between exposure to legacy persistent organic pollutants and parasitic body burdens into Indo-Pacific finless porpoises from the Pearl River Estuary, China Science of the Total Environment 643: 785-792.

https://doi.org/10.1016/j.scitotenv.2018.06.249

14 S Lee, K Kim, J Jeon, H-B Moon (2019) Optimisation of suspect and non-target analytical methods using GC/TOF for prioritization of emerging contaminants in the Arctic environment. Ecotoxicology and Environmental Safety 181: 11-17 https://doi.org/10.1016/j.ecoenv.2019.05.070

15 M Salimi, A Esrafili, M Gholami, AJ jafari, RR Kalantary, M Farzadkia, M Kermani, HR Sobhi (2017) Contaminants of emerging concern: a review of new approach in AOP technologies 189(414): 1-22 DOI 10.1007/s10661-017-6097-x

16 H Li, F Cheng, Y Wei, MJ Lydy, J You (2017) Review Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: An overview. Journal of Hazardous Materials 324: 258-271 https://doi.org/10.1016/j.jhazmat.2016.10.056

17 RA Hamza, OT Iorhemen, JH Tay (2016) Occurrence impacts and removal of emerging substances of concern from wastewater. Environmental Technology & Innovation 5: 161-175 http://dx.doi.org/10.1016/j.eti.2016.02.003

18 AEV Evans, J Mateo-Sagatsa, M Qadir, E Boelee, A Ippolito (2019) Agricultural water pollution: key knowledge gaps and research needs. Current Opinion in Environmental Sustainability 36: 20-27. https://doi.org/10.1016/j.cosust.2018.10.003

19 S Merel, SA Snyder (2016) Review article Critical assessment of the ubiquitous occurrence and fate of insect repellent *N*,*N*-diethyl-*m*-toluamide in water. Environment International 96: 98-117 http://dx.doi.org/10.1016/j.envint.2016.09.004

20 KO K'oreje, L Vergeynst, D Ombaka, P De Wispelaere, M Okoth, H Van langenhove, K Demeestere (2016) Occurrence patterns of pharmaceutical residue in wastewater, surface water and groundwater of Nairobi and Kisumi city, Kenya. Chemosphere 149: 238-244

http://dx.doi.org/10.1016/j.chemosphere.2016.01.095

21 L Lonappan, SK Brar, RK Das, M verma, RY Suramplli (2016) Review article Diclofenac and its transformation products: Environmental occurrence and toxicity – A review. Environment International 96: 127-138 http://dx.doi.org/10.1016/j.envint.2016.09.014

22 K Vorkamp, S Moller, K Falk, FF Riget, M Thomsen, PB Sorensen (2014) Levels and trends of toxaphene and chlordane-related pesticides in peregrine falcon eggs from South Greenland. Science of the Total Environment 468-469: 614-621

http://dx.doi.org/10.1016/j.scitotenv.2013.08.073

23 M Mezzelani, S Gorbi, F Regoli (2018) Pharmaceuticals in the aquatic environments: Evidence of emerged threat and future challenges for marine organisms. Marine Environmental Research 140: 41-60 https://doi.org/10.1016/j.marenvres.2018.05.001

24 Y Zhou, S Wu, H Zhou, H Huang, J Zhao, Y Deng, H Wang, Y Yang, J Yang, L Luo (2018) Review article: Chiral pharmaceuticals: Environment sources, potential human health impacts, remediation technologies and future perspective. Environment International 121: 523-537 https://doi.org/10.1016/j.envint.2018.09.041

25 B Du, AE Price, WC Scott, LA Kristofco, AJ Ramirez, CK Chambliss, JC Yelderman, BW Brooks (2014) Comparison of contamniants of emerging concern removal, discharge and water quality hazards among centralised and on-site wastewater treatment system effluents receiving common wastewater influent. Science of the Total Environment 466-467: 976-984 http://dx.doi.org/10.1016/j.scitotenv.2013.07.126

26 JL Rodriguez-Gil, N Caceres, R Dafouz, Y Valcarcel (2018) Caffeine and paraxanthine in aquatic systems: Global exposure distributions and probabilistic risk assessment. Science of the Total Environment 612: 1058-1071 http://dx.doi.org/10.1016/j.scitotenv.2017.08.066

27 M Carberry, W O'Connor, P Thavamani (2018) Review article Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environment International 115: 400-409 https://doi.org/10.1016/j.envint.2018.03.007

28 S J Barnes (2019) Understanding plastics pollution: The role of economic development and technological research. Environmental Pollution 249: 812-821 https://doi.org/10.1016/j.envpol.2019.03.108

29 Q Wang, BC Kelly (2018) Assessing bioaccumulation behaviour of hydrophobic organic contaminants in a tropical urban catchment. Journal of Hazardous Materials 358: 366-375 https://doi.org/10.1016/j.jhazmat.2018.06.070 30 R Benson, OD Conerly, W Sander, AL Batt, JS Boone, ET Furlong, ST Glassmeyer, DW Kolpin, HE Mash, KM Schenck, JE Simmons (2017) Human health screening and public health significance of contaminants of emerging concern detected in public water supplies. Science of the Total Environment 579: 1643-1648 http://dx.doi.org/10.1016/j.scitotenv.2016.03.146

31 JM Conley, N Evans, H Mash, L Rosenblum, K Schenck, S Glassmeyer, ET Furlong, DW Kolpin, VS Wilson (2017) Comparison of in vitro estrogenic activity and estrogen concentrations in source and treated waters from 25 U.S. drinking water treatment plants. Science of the Total Environment 579: 1610-1617 http://dx.doi.org/10.1016/j.scitotenv.2016.02.093

32 JS Boone, C Vigo, T Boone, C Byrne, J Ferrario, R Benson, J Donohue, JE Simmons, DW Kolpin, ET Furlong, ST Glassmeyer (2019) Per- and polyfluoroalkyl substances in source and treated waters of the United States. Science of the Total Environment 653: 359-369

http://doi.org/10.1016/j.scitotenv.2018.10.245

33 ET Furlong, AL Batt, ST Glassmeyer, MC Noriega, DW Kolpin, H mash, KM Schenck (2017) Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States: Pharmaceuticals. Science of the Total Environment 579: 1629-1642
http://dx.doi.org/10.1016/j.scitotenv.2016.03.128
34 MS Kostich, RW Flick, AL Batt, HE Mash, JS Boone, ET Fulong, DW Kolpin, ST Glassmeyer (2017) Aquatic concentrations of chemical analytes compared to ecotoxicity estimates. Science of the Total Environment 579: 1649-1657
http://dx.doi.org/10.1016/j.scitotenv.2016.06.234

35 DN King, MJ Donohue, SJ Vesper, EN Vilegas, MW Ware, ME Vogel, EF Furlong, DW Kolpin, ST Glassmeyer, S Pfaller (2016) Microbial pathogens in source and treated waters from drinking water treatment plants in the United States and implications for human health. Science of the Total Environment 562: 987-995 http://dx.doi.org/10.1016/j.scitotenv.2016.03.214

36 J Wang, A-qi Zhao, Bing-shu-He (2018) Review targeted eco-pharmaco vigilance for keto-profen in the environment: need , strategy, challenge. Chemosphere 194: 450-462.

#### https://doi.org/10.1016/j.chemosphere.2017.12.020

37 HS Auta, CU Emenike, SH Fauziah (2017) Review article Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects and potential solutions. Environment International 102: 165-176 http://dx.doi.org/10.1016/j.envint.2017.02.013

38 LA Kristofco, BW Brooks (2017) Global scanning of antihistamines in the environment: Analysis of occurrence and hazards in aquatic systems. Science of the Total Environment 592: 477-487. http://dx.doi.org/10.1016/j.scitotenv.2017.03.120

39 Vega, M., Nerenberg, R., Vargas, I.T (2018) Review article Perchlorate contamination in Chile: Legacy, challenges, and potential solutions. Environmental Research 164: 316-326. https://doi.org/10.1016/j.envres.2018.02.034

40 AJ Ebele, M A-E Abdallah, S Harrad (2017) Pharmaceuticals and personal care products PPCPs in the freshwater aquatic environment. Emerging Contaminants 3: 1-16. http://dx.doi.org/10.1016/j.emcon.2016.12.004

41 TH Miller, NR Bury, SF Owen, JI Macrae, LP Barron (2018) A review of the pharmaceutical exposome in aquatic fauna. Environmental Pollution 239: 129-146 https://doi.org/10.1016/j.envpol.2018.04.012

42 ST Glassmeyer EF Furlong DW Kolpin, AL Batt, R Benson, JS Boone, O Conerly, MJ Donohue, DN King, MS Kostich, HE Mash, SL Pfaller, KM Schenck, JE Simmons, EA Varughese, SJ Vesper, EN Villegas, VS Wilson (2017) Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States. Science of the Total Environment 581-582: 909-922 https://doi.org/10.1016/j.scitotenv.2016.12.004

43 SS Mohanty, HM Jena (2019) Systematic assessment of the environmental impacts and remediation strategies for chloroacetanilide herbicides. Journal of Water Process Engineering 31(100860): 1-12 https://doi.org/10.1016/j.jwpe.2019.100860 <u>44</u> LA Henriquez-Hernandez, OP Luzardo, JLP Arellano, C Carranza, NJ Sanchez, M Alemida-Gonzalez, N Ruiz-Suarez, PF valeron, M Camacho, M Zumbado, LD Boada (2016) Different pattern of contamination by legacy POPs in two populations from the same geographical area but with completely different lifestyles: Canary Islands (Spain) vs. Morocco. Science of the Total Environment 541: 51-57 https://doi.org/10.1016/j.scitotenv.2015.09.042

45 P Montuori, S Aurino, F Garzonio, M Triassi (2016) Polychlorinated biphenyls and organochlorine pesticides in Tiber River and Estuary: Occurrence, distribution and ecological risk. Science of the Total Environment 571: 1001-1016. http://dx.doi.org/10.1016/j.scitotenv.2016.07.089

46 BH Schafhauser, LA Kristofco, CM Ribas de Oliveira, BW Brooks (2018) Global review and analysis of erythromycin in the environment: Occurrence, bioaccumulation and antibiotic resistance hazards. Environmental Pollution 238: 440-451. https://doi.org/10.1016/j.envpol.2018.03.052

47 Z Shi, L Zhang, J Li, Y Wu (2018) Legacy and emerging brominated flame retardants in China: A review on food and human milk contamination, human dietary exposure and risk assessment. Chemosphere 198: 522-536 <a href="https://doi.org/10.1016/j.chemosphere.2018.01.161">https://doi.org/10.1016/j.chemosphere.2018.01.161</a>

48 W Gwenzi, K Musiyiwa, L Mangori (2018) Sources behavior and health risks of antimicrobial resistance genes in wastewaters: a hotspot reservoir. Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2018.02.028

49 K Fjalkowski, A Rorat, A Grobelak, MJ Kacprzak (2017) The presence of contaminations in sewage sludge – the current situation. Journal of Environmental Management 203: 1126-1136 http://dx.doi.org/10.1016/j.jenvman.2017.05.068

50 LL Ndlela,PJ Oberholster, JH van Wyk, PH Cheng (2016) Review An overview of cyanobacterial bloom occurrences and research in Africa over the last decade. Harmful Algae 60: 11-26 http://dx.doi.org/10.1016/j.hal.2016.10.001 51 X Song, Y Wen, Y Wang, M Adeel, Y Yang (2018) Environmental risk assessment of the emerging EDCs contaminants from rural soil and aqueous sources: Analytical and modelling approaches. Chemosphere 198: 546-555

#### https://doi.org/10.1016/j.chemosphere.2018.01.060

52 N Lascar, U Kumar. Plastics and microplastics: a threat to environment. Environmental technology and Innovation (2019) 14(100352): 1-8

https://doi.org/10.1016/j.eti.2019.100352

53 J Guo, Z Li, P Ranasinghe, KJ Rockne, NC Sturchio (2019). Halogenated flame retardants in sediments from the Upper Laurentian Great Lakes: Implications to long range transport and evidence of long-term transformation. Journal of Hazardous Materials https://doi.org/10.1016/j.jhazmat.2019.121346

54 R Lohman, IM Belkin (2014) Review Organic pollutants and ocean fronts across the Atlantic ocean: a review. Progress in Oceanography 128: 172-184. https://doi.org/10.1016/j.pocean.2014.08.013

55 Bolukaoto, J.Y., Kock, M.M., Strydom, K.-A., Mbelle, N.M., Ehlers, M.M (2019) Molecular characteristics and genotypic diversity of enterohaemorrhagic Escherichia coli 0157:H7 isolates in Gauteng region, South Africa. Science of the Total Environment 692: 297-304.

https://doi.org/10.1016/j.scitotenv.2019.07.119 (SA1)

56 Osuolale, O., Okoh, A (2017) Human enteric bacteria and viruses in five wastewater treatment plants in the Eastern Cape, South Africa. Journal of Infection and Public Health 10: 541-547.

http://dx.doi.org/10.1016/j.jiph.2016.11.012

## (SA2)

57 F Marks et al (2017) Incidence of invasive salmonella disease in sub-Saharan Africa: a multicenter population-based surveillance study. Lancet Gobal Health 5: e310-e323.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5316558/pdf/main.pdf

(SA3)

58 Han, H-J., Wen, H., Zhou, C-M., Chen, F-F., Luo, L-M., Liu, J., Yu, X-J (2015) Review Bats as reservoirs of severe emerging infectious diseases. Virus Research 205: 1-6. http://doi.org/10.1016/j.virusres.2015.05.006

59 MT Dlamini, R Lessels, T Iketleng, T de Oliveira (2019) Whole genome sequencing for drug-resistant tuberculois management in South Africa: What gaps would this address and what are the challenges to implementation? J Clin Tuberc Other Mycobact Dis 16 (100115):1-7.

https://doi.org/10.1016/j.jctube.2019.100115 (SA4)

60 I Adekoya, A Obadian, CC Adaku, M De Boevre, S Okoth, S De Saeger, P Njobeh (2018) Mycobiota and co-occurrence of mycotoxins in South African maize-based oaque beer. International Journal of Food Microbiology 270: 22-30 <a href="https://doi.org/10.1016/j.ijfoodmicro.2018.02.001">https://doi.org/10.1016/j.ijfoodmicro.2018.02.001</a> (SA5)

61 AM Khaneghah, Y Fakhri, HH Gahruie, M Niakousari, AS Sant'Ana (2019) Review Mycotoxins in cereal-based products during 24 years (1983-2017): A global systematic review. Trends in Food Science & Technology 91: 95-105 https://doi.org/10.1016/j.tifs.2019.06.007

62 AS Tsagkaris, JLD Nelis, GMS Ross, S Jafari, J Guercetti, K Kopper, Y Zhao, K Rafferty, JP Salvador, D Migliorelli, GI Salentijn, K Campbell, MP Marco, CT Elliot, MWF Nielen, J Pulkrabova, J Hajslova (2019) Critical assessment of recent trends related to screening and confirmatory analytical methods for selected food contaminants and allergens. Trends in Analytical Chemistry 121 (115688): 1-14

https://doi.org/10.1016/j.trac.2019.115688

63 MC Fossi, M Baini, C Panti, M Galli, B Jimenez, J Munoz-Arnanz, L Marsili, MG Finoia, D Ramirez-Macias (2017) Are whale sharks exposed to persistent organic pollutants and plastic pollution in the Gulf of California (Mexico)? First ecotoxicological investigation using skin biopsies. Comparative Biochemistry and Physiology, Part C. 199 : 48-58. http://dx.doi.org/10.1016/j.cbpc.2017.03.002 64 J Beyer, NW Green, S Brooks, IJ Allan, A Ruus, T Gomes, ILN Brate, M Schoyen (2017) Blue mussels (*Mytilus edulis* spp) as sentinel organisms in coastal pollution monitoring: A review. Marine Environmental Research 130: 338-365 http://dx.doi.org/10.1016/j.marenvres.2017.07.024

65 P Tomkins, M Saaristo, MG Bertram, RB Tomkins, M Allinson, BBM Wong (2017) The agricultural contaminant 17 betatrenbolone disrupts male-male competition in the guppy (*Poecilia reticulate*). Chemosphere 187: 286-293 <u>http://dx.doi.org/10.1016/j.chemosphere.2017.08.125</u>

66 J Lu, I Struewing, L Wymer, DR Tettenhorst, J Shoemaker, J Allen (2020) Use of qPCR and RT-qPCR for monitoring variations of microcystin producers and as an early warning system to predict toxin production in an Ohio inland lake. Water Research 170 (115262): 1-12

https://doi.org/10.1016/j.watres.2019.115262

67 NH Tran, Y Li, M Reinhard, Y He, KY-H Gin, A sensitive and accurate method for simultaneous analysis of algal toxins in freshwater using UPLC-MS/MS and 15N-microcystins as isotopically labelled internal standards. Science of the Total Environment ? : 1-10

https://doi.org/10.1016/j.scitotenv.2020.139727

68 A Muller, H Ostelund, J Marsalek, M Viklander (2020) Review The pollution conveyed by urban runoff: A review of sources. Science of the Total Environment 709(136125): 1-18 https://doi.org/10.1016/j.scitotenv.2019.136125

69 R Alvarez-Ruiz, Y Pico. Analysis of emerging and related pollutants in aquatic biota (2020) Trends in Environmental Analytical Chemistry 25 (e00082): 1-19 https://doi.org/10.1016/j.teac.2020.e00082

70 IY Lopez-Pacheco, A Silva-Nunez, C Salinas-Salazar, A Arevalo-Gallegos, L A Lizarazo-Holguin, D Barcelo, HMN Iqbal, R Parra-Saldivar (2019) Review Anthropogenic contaminants of high concern: Existence in water resources and their adverse effects. Science of the Total Environment 690: 1068-1088 https://doi.org/10.1016/j.scitotenv.2019.07.052 71 C Olsah, OO Okoh, AI Okoh (2019). Global evolution of organochlorine pesticides rsearch in biological and environmental matrices from 1992 to 2018: A bibliometric approach. Emerging Contaminants 5: 157-167 https://doi.org/10.1016/j.emcon.2019.05.001

72 S Fekadu, E Alemayehu, R Dewil, B van der Bruggen (2019) Review Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge. Science of The Total Environment 654: 324-337. https://doi.org/10.1016/j.scitotenv.2018.11.072

73 M-C Danner, A Robertson, V Behrends, J Reiss (2019) Antibiotic pollution in surface fresh waters: Occurrence and effects. Science of The Toal Environment 664: 793-804. https://doi.org/10.1016/j.scitotenv.2019.01.406

74 I Sibiya, G Poma, M Cuykx, A Covaci, AP Daso, J Okonkwo (2019) Targeted and non-target screening of persistnet organic pollutants and organophosphorus flame retardants in leachate and sediment from landfill sites in Gauteng Province, South Africa. Science of The Total Environment 653: 1231-1239. https://doi.org/10.1016/j.scitotenv.2018.10.356

(SA6)

75 TP Wood, CSJ Duvenage, E Rohwer (2015) The occurrence of anti-retroviral componds used for HIV treatment in South African surface water. Environmental Pollution199: 235-243 http://dx.doi.org/10.1016/j.envpol.2015.01.030

#### (SA7)

76 C Nannou, A Ofrydopoulou, E Evgenidou, D Haeth, E Haeth, D Lambropoulou (2020) Review Antiviral drugs in aquatic environment and wastewater treatment plants: A review on occurrence, fate, removal and ecotoxicity. Science of the Total Environment 699(134322): 1-31

https://doi.org/10.1016/j.scitotenv.2019.134322

77 T Naidoo, D Glassom, AJ Smit (2015) Plastic pollution in five urban estuaries of KwaZulu-Natal, South Africa. Marine Pollution Bulletin 101: 473-480. https://doi.org/10.1016/j.marpolbul.2015.09.044 (SA8) JS Boone, C Vigo, T Boone, C Byrne, J ferrario, R Benson, J Donohue, JE Simmons, DW Kolpin, ET Furlong, ST G;asmeyer. 2019. Per- and polyfluoroalkyl substances in source and treated drinking waters of the United States Science of the Total Environment 653: 359-369 <u>https://dx.doi.org/10.1016/j.scitotenv.2018.10.245</u>

78 Madikizela LM1, Tavengwa NT2, Chimuka L2 (2017) Status of pharmaceuticals in African water bodies: Occurrence, removal and analytical methods. Journal of Environmental Management. Volume 193, 15 May 2017, Pages 211-220 https://doi.org/10.1016/j.jenvman.2017.02.022 (SA9)

LM Madikezela, S Ncube, L Chimuka (2020) Review Analysis, occurrence and removal of pharmaceuticals in African water resources: a current status. Journal of Environmental management 253(109741): 1-11 https://doi.org/10.1016/j.jenv.2019.109741 (SA1)

79 HA Assress, H Nyoni, BB Mamba, TAM Msagati (2020) Occurrence and risk assessment of azole antifungal drugs in water and wastewater. Ecotoxicology and Environmental safety 187(109868)1-11

https://doi.org/10.1016/j.ecoenv.2019.109868 (SA9) (SA2)

80 DP Masemola, EN Nxumalo, H Hyoni, TTI Nkambule, BB Mamba, TAM Msagati (2019) The occurrence and exposure risk assessment of psychoactive drug residues and metabolites in aquatic environment. Journal of Pharmaceutical and Biomedical Analysis https://doi.org/10.1016/j.jpba.2019.112944 (SA10) (SA3)

81 CA Magwira, N Aneck-Hahn, MB Taylor (2019) Fate, occurrence and potential adverse effects of antimicrobials used for treatment of tuberculosis in the aquatic environment in South Africa. Environmental Pollution 254(1112990): 1-10. https://doi.org/10.1016/j.envpol.2019.112990 (SA11) (SA4) 82 TT Mosekiemang, MA Stander, A de Villiers (2019) Simultaneous quantification of commonly prescribed antiretroviral drugs and their selected metabolites in aqueous environmental samples by direct injection and solid phase extraction liquid chromatography-tandem mass spectrometry. Chemosphere 220: 983-992.

https://doi.org/10.1016/j.chemosphere.2018.12.205 (SA 12) (SA5)

83 AC Faleye, AA Adegoke, K Ramluckan, F Fick, F Bux, TA Stenstrom (2019) Concentration and reduction of antibiotic residues in selected wastewater treatment plants and receiving water bodies in Durban, South Africa. 2019. Science of the Total Environment 678: 10-20

https://doi.org/10.1016/j.scitotenv.2019.04.410 (SA13) (SA6)

84 C Rimayi, D Odusanya, JM Weiss, J de Boer, L Chimuka (2018) Contaminanats of emerging concern in the Hartebeespoort Dam catchment and the uMngeni River estuary 2016 pollution incident, South Africa Sci Total Environ . 2018 Jun 15;627:1008-1017. https://doi.org/10.1016/j.scitotenv.2018.01.263 (SA14) (SA7)

85 C Rimayi, D Odusanya, JM Weiss, J de Boer, L Chimuka (2018) Seasonal variation of chloro-s-triazines in the Hartebeespoort Dam catchment, South Africa. Science of the Total Environment 613-614: 472-482 <u>http://doi.org/10.1016/j.scitotenv.2017.09.119</u> (SA15) (SA8)

86 N Musee (2018) Environmental risk assessment of triclosan and triclocarban from personal care products in South Africa. Environmental Pollution 242: 827-838 <u>https://doi.org/10.1016/j.envpol.2018.06.106</u> (SA 16) (SA9)

87 OS Fatoki, BO Opeolu, B Genthe, OS Olatunji (2018) Multi-residue method for the determination of selected veterinary pharmaceutical residues in surface water around Livestock Agricultural farms. Heliyon 4 e01066): 1-16 https://doi.org/10.1016/j.heliyon.2018.e01066

# (SA 17) (SA10)

88 OA Abafe, J Spath, J Fick, S Jansson, C Buckley, A Stark, B Pietruschka, BS Martincigh (2018) LC-MS/MS determination of antiretroviral drugs in influents and effleunts from wastewater treatment plants in KwaZulu-Natal, South Africa. Chemosphere 200: 660-670

https://doi.org/10.1016/j.chemosphere.2018.02.105 (SA 18) (SA11)

89 C Reynolds, PG Ryan (2018) Baseline Micro-plastic ingestion by water birds from contaminated wetlands in South Africa. Marine Pollution Bulletin 126: 330-333

https://doi.org/10.1016/j.marpolbul.2017.11.021

(SA 19) (SA12)

90 W Gwenzi, L Mangori, C Damha, N Chaukura, N Dunjana, E Sanganyado (2018) Review Sources, behaviour and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Science of the Total Environment 636: 299-313.

https://doi.org/10.1016/j.scitotenv.2018.04.235 (SA 20) (SA13)

91 E Archer, B Petrie, B Kasprzyk-Horden, GM Wolfaardt (2017) The fate of pharmaceuticals and personal care products (PPCPs), endocrine ddisrupting contaminants (EDCs), metabolite and illicit drugs in a WWTW and environmental waters. Chemosphere 174: 437-446.

http://dx.doi.org/10.1016/j.chemosphere.2017.01.101 (SA 21) (SA14)

92 C Olisah, OO Okoh, AI Okoh, 2018. A bibliometric analysis of investigations of polybrominated diphenyl ethers (PBDEs) in biological and environmental matrices from 1992-2018. Heliyon 4 : e00964 https://doi.org/10.1016/j.heliyon.2018.e00964 (SA 22) (SA15) 93 I Christie, JL Reiner, JA Bowden, H Botha, TM Cantu, D Govender, MP Guillette, RH Lowers, WJ Luus-Powell, D Pienaar, WJ Smit, LJ Guiette Jr. (2016) Perfluorinated alkyl acids in the plasma of South African crocodiles (*Crocodylus niloticus*). Chemosphere 154: 72-78.

http://dx.doi.org/10.1016/j.chemosphere.2016.03.072 (SA 23) (SA16)

94 JT Bangma, JL Reiner, H Botha, TM Cantu, MA Gouws, MP Guilette, JP Koelmel, WJ Luus-Powell, J Myburg, O Rynders, JR Sara, WJ Smit, JA Bowden (2017) Tissue distribution of perfluoroalkyl acids and health status in wild Mozambique tilapia (*Oreochromis mossambicus*) from Loskop Dam, Mpumalanga, South Africa. Journal of Environmental Sciences 61: 59-67. http://dx.doi.org/10.1016/j.jes.2017.03.041 (SA 24) (SA17)

95 TP Wood, C Du Preez, A Steenkamp, C Duvenage, ER Rohwer (2017) Database-driven screening of South African surface water and the targeted detection of pharmaceuticals using liquid chromatography-high resolution mass spectrometry. Environmental Pollution 230: 453-462

http://dx.doi.org/10.1016/j.envpol.2017.06.043 (SA 25) (SA18)

96 AA Adegoke, AC Faleye, TA Stenstrom (2018) Residual antibiotics, antibiotic resistant superbugs and antibiotic resistance genes in surface water catchments: Public Health Impact. Physics and Chemistry of the Earth 105: 177-183 <u>https://doi.org/10.1016/j.pce.2018.03.004</u> (SA 26) (SA19)

97 LEK Series, J Bishop, N Okes, J Broadfiled, DJ Winterton, RH Poppenga, S Viljoen, RK Wayne, MJ O'Rian. Widespread anticoagulant poison exposure in predators in a rapidly growing South African city (2019) Science of the Total Environment 666: 581-590

https://doi.org/10.1016/j.scitotenv.2019.02.122 (SA 27) (SA20)

98 OI Olukule, OJ Okonwo. Concentration of novel brominated flame retardants and HBCD in leachates and sediments from selected municipal solid waste landfill sites in Gauteng province, South Africa (2015) Waste Management 43: 300-306.

https://doi.org/10.1016/j.wasman.2015.07.009 (SA 28) (SA21)

99 NY Mlunguza, S Ncube, PN Mahlambi, L Chimuka, LM Madikizela (2019) Adsorbents and removal strategies of non-steroidal anti-inflammatroy drugs from contaminated water bodies. Journal of Environmental Chemical Engineering 7: 103142: 1-14 <a href="https://doi.org/10.1016/j.jece.2019.103142">https://doi.org/10.1016/j.jece.2019.103142</a> (SA 29)

100 RF Lehutso, AP Daso, JO Okonkwo (2017) Occurrence and environmental levels of triclosan and triclocarban in selected wastewater treatment plants in Gauteng province, South Africa. Emerging Contaminants 3(3): 107-114. http://dx.doi.org/10.1016/j.emcon.2017.07.001 (SA 30) (SA 23)

101 Musee (2017) A model for screening and prioritizing consumer nanoproduct risks: A case study from South Africa. Environment International 110: 121-131 <u>http://dx.doi.org/10.1016/j.envint.2017.01.002</u> (SA 31) (SA24)

102 E Gakuba (2016) ANALYSIS AND MONITORING OF PERSISTENT ORGANIC POLLUTANTS IN THE UMGENI RIVER, KWAZULU-NATAL, SOUTH AFRICA. PhD Thesis https://ukzn-dspace.ukzn.ac.za/bitstream/handle/10413/15599/Gakuba\_Emmanuel\_2016.pdf?sequence=1 (SA 32) (SA25)

103 HN Bischel, BDO Duygan, L Strande, CS McArdell, KM Udert, T Kohn (2015) Pathogens and pharmaceuticals in sourceseparated urine in eThekwini, South Africa. Water Research 85: 57-65 <u>http://dx.doi.org/10.1016/j.watres.2015.08.022</u> (SA 33)

104 W Gwenzi (2020) Review Occurrence, behavior and human exposure pathways and health risks of toxic geogenic contaminants in serpentinitic ultramafic geological environments (SUGEs): A medical geology perspective. Science of the Total Environment 700 (134622): 1-116.

#### https://doi.org/10.1016/j.scitotenv.2019.134622

105 P Satishkumar, RAA Meena, T Palanisami, V Ashokkumar, T Palvannan, FL Gu (2020) Review Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota – a review. Science of the Total Environment 698(134057): 1-32.

https://doi.org/10.1016/j.scitotenv.2019.134057

106 S Al-Maadheed, I Goktepe, ABI Latiff, B Shomar (2019) Antibiotics in hospital effluent and domestic wastewater treatment plants in Doha, Qatar. Journal of Water Process Engineering 28: 60-68. https://doi.org/10.1016/j.jwpe.2019.01.005

107 P Bruce-Vanderpuije, D Megson, EJ Reiner, L Bradley, S Adu-Kumi, JA Gardella Jr. (2019) The state of POPs in Ghana – A review on persistent organic pollutants: Environmental and human exposure. Environmental Pollution 245: 331-342. https://doi.org/10.1016/j.envpol.2018.10.107

108: W Wang, H Gao, S Jin, R Li, G Na (2019) The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: A review. Ecotoxicology and Environmental Safety 173: 110-117 https://doi.org/10.1016/j.ecoenv.2019.01.113

109 CG Alimba, C Faggio (2019) Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. Environmental Toxicology and Pharmacology 68: 61-74 <a href="https://doi.org/10.1016/j.etap.2019.03.001">https://doi.org/10.1016/j.etap.2019.03.001</a>

110 RA Mole, BW Brooks (2019) Global scanning of selective serotonin reuptake inhibitors: occurrence, wastewater treatment and hazards in aquatic systems. Environmental Pollution 250: 1019-1031 https://doi.org/10.1016/j.envpol.2019.04.118

111 M Sievers, R Hale, KM Parris, SD Melvin, CM Lanctot, SE Swearer (2019) Review Contaminant-induced behavioural changes in amphibians: A meta-analysis. Science of the Total Environment 693: 133570: 1-11 https://doi.org/10.1016/j.scitotenv.2019.07.376 112 G Mascolo, S Murgolo, F Stefani, L Vigano (2019) Target and suspect contaminants of emerging concern in the Po River Delta lagoons. Estuarine, Coastal and Shelf Science 230: 106424: 1-10. https://doi.org/10.1016/j.ecss.2019.106424 (not in file)

113 K Noguera-Oviedo, DS Aga (2016) Review lessons learned from more than two decades of research on emerging contaminants in the environment. Journal of Hazardous Materials 316: 242-251 https://doi.org/10.1016/j.jhazmat.2016.04.058 (not in file)

114 M Owoseni, A Okoh (2017) Evidence of emerging challenge of chlorine tolerance of *Enterococcus* species recovered from wastewater treatment plants. International Biodeterioration & Bioderadation 120: 216-223 https://dx.doi.org/10.1016/j.ibiod.2017.02.016 (SA 34)

115 NM Burri, R Weatherl, C Moeck, M Schirmer (2019) Review A review of threats to groundwater quality in the anthropocene. Science of the Total Environment 684: 136-154 https://doi.org/10.1016/j.scitotenv.2019.05.236

116 L Griffero, J Alcantara-Duran, C Alonso, L Rodriguez,-Gallego, D Moreno-Gonzalez, JF Garica-Reyes, A Molina-Diaz, A Perez-Parada (2019) Basin-scale monitoring and risk assessment of emerging contaminants in South American Atlantic coastal lagoons. Science of the Total Environment 697(134058): 1-12

https://doi.org/10.1016/j.scitotenv.2019.134058

117 D Arismendi, M Becerra-Herrera, I Cerrato, P Richter (2019) Simultaneous determination of mltiresidue and multiclass emerging contaminants in waters by rotating –disk sorptive extraction-derivatization-gas chromatography/mass spectrometry. Talanta 201: 480-489:

https://doi.org/10.1016/j.talanta.2019.03.120

118 KJD Pollit, J-H Kim, J Peccia, M Elimelech, Y Zhang, G Charkoftaki, B Hodges, I Zucker, H Huang, NC Deziel, K Murphy, M Ishii, CH Johnson, A Boissevain, E O'Keefe, PT Anastas, D Orlicky, DC Thompson, V Vasiliou (2019) Review 1,4 Dioxane as an emerging water contaminant: State of the science and eevaluation of research needs. Science of the Total environment 690: 853-866

https://doi.org/10.1016/j.scitotenv.2019.06.443

119 G Reichert, S Hilgert, S Fuchs, JCR Azevedo (2019) Emerging contaminants and antibiotic resistance in the different environmental matrices of Latin America. Environmental Pollution 255: 113140: 1-13 https://doi.org/10.1016/j.envpol.2019.113140

120 Y Aminot, SJ Sayfritz, KV Thomas, L Godinho, E Botteon, F Ferrari, V Boti, T Albanis, M Kock-Schulmeyer, MS Diaz-Cruz, M Farre, D Barcelo, A Marques, JW Readman (2019) Environmental risks associated with ccontaminants of legacy and emerging concern at European aquaculture areas. Environmental Pollution 252: 1301-1310 https://doi.org/10.1016/j.envpol.2019.05.133

121 M Taheran, M Naghdi, SK Brar, M Verma, RY Surampalli (2018) Emerging contaminants: here today, there tomorrow! Environmental Nanotechnology, Monitoring & Management 10: 122-126 https://doi.org/10.1016/j.enmm.2018.05.010

122 ZN Norvill, A Shilton, B Guieysse (2016) Review Emerging contaminant degradation and removal in algal wastewater treatment ponds: Identifying the research gaps. Journal of Hazardous Materials 313: 291-309 https://doi.org/10.1016/j.jhazmat.2016.03.085

123 P Branchet, NA Castro, H Fenet, E Gomez, F Courant, D Sebag, J Gardon, C Jourdan, Bn Ngatcha, I Kengne, E Cadot, C Gonzalez (2019) Anthropic impacts on Sub-Saharan urban water resources through their pharmaceutical contamination (Yaounde, Center Region, Cameroon). Science of the Total Environment 660: 886-898

https://doi.org/10.1016/j.scitotenv.2018.12.256

24 AP Daso, JO Okonkwo, R Jansen, PBC Forbes, A Kotze, ER Rowher (2015) Polybrominated diphenyl ethers (PBDEs) in eggshells of the Southern Ground-Hornbill (*Bucorvus leadbeateri*) and Wattled Crane (*Bugeranus carunculatus*) in South Africa. Chemosphere 118: 284-292

http://dx.doi.org/10.1016/j.chemosphere.2014.09.003 (SA 35)

125 H Bouwman, D Govender, L Underhill, A Polder (2015) Chlorinated, brominated and fluorinated organic pollutants in African Penguin eggs: 30 years since the previous assessment. Chemosphere 126: 1-10

https://doi.org/10.1016/j.chemosphere.2014.12.071 (SA 36)

126 PA Fair, B Wolf, ND White, SA Arnott, K Kannan, R Karthikraj, JE Vena (2019) Perfluoroalkyl substances (PFASs) in edible fish species from Charlston Harbour and tributaries, South Carolina, United States: Exposure and risk assessment. Environmental Research 171: 266-277 https://doi.org/10.1016/j.envres.2019.01.021

127 VLB Jaspers, A Covaci, D Herzke, I Eulaers, M Eeens (2019) Bird feathers as a biomonitor for environmental pollutants: Prospects and pitfalls. Trends in Analytical Chemistry 118: 223-226. https://doi.org/10.1016/j.trac.2019.05.019

128 H Houissa, S Lasram, Sulyok, B Sarkanj, A Fontana, C Strub, R Krska, S Schorr-Galindo, A Ghorbel (2019) Multimycotoxin LC-MS/MS analysis in pearl millet (*Pennisetum glaucum*) from Tunisia. Food Control 106(106738): 1-11 https://doi.org/10.1016/j.foodcont.2019.106738

129 K Oloruntoba, O Sindiku, O Osibanjo, S Balan, R Weber (2019) Polybrominated diphenyl ethers (PBDEs) in chicken eggs and cow milk around municipal dumpsites in Abuja, Nigeria. Ecotoxicology and Environmental Sfaety 179: 282-289 https://doi.org/10.1016/j.ecoenv.2019.04.045

130 RJ Letcher, AD Morris, M Dyck, E Sverko, EJ Reiner, DAD Blair, SG Chu, L Shen (2018) Legacy and new halogenated persistent organic pollutants in polar bears from a contamination hotspot in the Arctic, Hudson Bay, Canada. Science of the Total Environment 610-611: 121-136

http://dx.doi.org/10.1016/j.scitotenv.2017.08.035

131 A Chukwuka, O Ogbeide, G Uhunamure (2019) Gonad pathologyand intersex severity in pelagic (*Tilapia zilli*) and benthic (*Neochanna diversus* and *Clarias gariepinus*) species from a pesticide-impacted agrarian catchment, south-south Nigeria. Chemosphere 225: 535-547 https://doi.org/10.1016/j.chemosphere.2019.03.073 132 Q Wu, H Bouwman, RC Uren, C D van der Lingen, W Vetter (2019) Halogenated natural products and anthropogenic persistent organic pollutants in chokka squid (*Loligo reynaudii*) from three sites along the South Atlantic and Indian ocean coasts of South Africa. Environmental Pollution 255(2) (113282): 1-11

https://doi.org/10.1016/j.envpol.2019.113282 (SA 37)

133 M du Preez, R Nel, H Bouwman (2018) First report of metallic elements in loggerhead and leatherback turtle eggs from the Indian ocean. Chemosphere 197: 716-728 https://doi.org/10.1016/j.chemosphere.2018.01.106 (SA 38)

134 M du Preez, D Govender, H Kylin, H Bouwman (2018) Metallic elements in Nile Crocodile eggs from the Kruger National Park, South Africa. Ecotoxicology and Environmental Safety. 148: 930-941 https://doi.org/10.1016/j.ecoenv.2017.11.032 (SA 39)

135 T Chouvelon, C Brach-Papa, D Auger, N Bodin, S Bruzac, S Crochet, M Degroote, SJ Hollanda, C Hubert, J Knoery, c Munschy, A Puech, E Rozuel, B Thomas, W West, J Bourjea, N Nikolic (2017) Chemical contaminants (trace metals, persistent organic pollutants) in albacore tuna from western Indian and south-eastern Atlantic oceans: Trophic influence and potential as tracers of populations. Science of the Total Environment 596-597: 481-495

http://dx.doi.org/10.1016/j.scitotenv.2017.04.048

136 A Arukwe, J Myburg, HA Langberg, AO Adeogun, IG Braa, M Moeder, D Schlenk, JP Crago, F Regoli, C Botha (2016) Developmental alterations and endocrine-disruptive responses in farmed Nile corocodiles (*Crocodylus niloticus*) exposed to contaminants from the Crocodile River, South Africa. Aquatic Toxicology 173: 83-93 <u>http://dx.doi.org/10.1016/j.aquatox.2015.12.027</u> (SA 40)

137 Susan T. Glassmeyer, Edward T. Furlongb, Dana W. Kolpinc, Angela L. Batta, Robert Bensond, J. Scott Boonee, 1, Octavia Conerlyf, Maura J. Donohuea, Dawn N. Kinga, Mitchell S. Kosticha, Heath E. Masha, Stacy L. Pfallera, Kathleen M. Schencka, Jane Ellen Simmonsg, Eunice A. Varughesea, Stephen J. Vespera, Eric N. Villegasa, Vickie S. Wilsonga (2017) Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States Sci Total Environ. 2017 March 01; 581-582: 909–922. http://dx.doi.org/10.1016/j.scitotenv.2016.12.004

138 T Letseka, MJ George (2017) Development of a coupled dispersive liquid-liquid micro-extraction with supported liquid phase micro-extraction for triclosan determination in wastewater. Water SA 44(1): 13-19 http://dx.doi.org/10.4314/wsa.v44i1.02 (SA 41)

139 SB Mnguni, C Schoeman, SS Marais, ECukrowska, L Chimuka N (2018) Determination of oestrogen hormones in raw and treated water samples by reverse phase ultra-fast liquid chromatography mass spectrometry – a case study in Johannesburg South, South Africa. Water SA 44(1): 111-117 http://dx.doi.org/10.4314/wsa.v44i1.13 (SA 42)

140 E Gakuba, B Moodley, P Ndungu, G Birungi (2018) Partition distribution of selected organochlorine pesticides in water, sediment pore water and surface sediment from uMngeni River, KwaZulu-Natal, South Africa. Water SA 44(2): 232-249 http://dx.doi.org/10.4314/wsa.v44i2.09 (SA 43)

141 A Yahaya, OA Adeniji, OO Okoh, SP Songca, AI Okoh (2018) Distribution of polychlorinated biphenyl along the course of the Buffalo River, Eastern Cape Province, South Africa, and possible health risks. Water SA 44(4): 232-249 http://dx.doi.org/10.4314/wsa.v44i4.09 (SA 44)

142. Nhamo Chaukura, Nqobile G Ndlangamandla, Welldone Moyo, Titus AM Msagati, Bhekie B Mamba, Thabo TI Nkambule (2018) Review: Natural organic matter in aquatic systems – a South African perspective. Water SA 44(4): 624-635 http://dx.doi.org/10.4314/wsa.v44i4.11 (SA 45)

143 Jasna Hrenovic, Goran Durn, Snjezana Kazazic, Svjetlana Dekic, Martina Seruga Music (2019) Untreated wastewater as a source of carbapenem-resistant bacteria to the riverine ecosystem. Water SA 45(1): 55-62

https://doi.org/10.4314/wsa.v45i1.07 (SA 46)

144 S de Villiers (2019) Short Communication. Microfibre pollution hotspots in river sediments adjacent to South Africa's coastline. Water SA 45(1): 97-102. https://doi.org/10.4314/wsa.v45i1.11 (SA 47)

145 TB Chokwe, SM Mporetji (2019) Organophosphorus flame retardants in surface and effluent water samples from the Vaal River catchment, South Africa: levels and risk to aquatic life. Water SA 45(3): 469-476. https://doi.org/10.17159/wsa/2019.v45.i3.6744 (SA 48)

146 JA Day, HL Malan, E Malijani, AP Abegunde (2019) Review: Water quality in non-perennial rivers. Water SA 45(3): 487-500. https://doi.org/10.17159/wsa/2019.v45.i3.6746 .(SA 49)

147 Emmanuel Gakuba, Brenda Moodley, Patrick Ndungu, Grace Birungi (2019) Evaluation of persistent organochlorine pesticides and polychlorinated biphenyls in Umgeni River bank soil, KwaZuluNatal, South Africa. Water SA 45(4): 592-607. https://doi.org/10.17159/wsa/2019.v45.i4.7540 (SA 50)

148 Amy du Pisanie, Louis du Preez, Johnnie van den Berg1 and Rialet Pieters (2019) Short Communication The rate of release of Cry1Ab protein from Bt maize leaves into water. Water SA 45(4): 710-175. <u>https://doi.org/10.17159/wsa/2019</u>.v45.i4.7553
(SA 51)

149 M Machete, JM Shadung (2019) Short Communication Detection of selected agricultural pesticides in river and tap water in Letsitele, Lomati and Vals–Renoster catchments, South Africa. Water SA 45(4): 710-175. https://doi.org/10.17159/wsa/2019.v45.i4.7554 (SA 52) 150 JH van Wyk, E Archer, OO Babalola, JC Truter, E Jansen van Rensburg, J Dabrowski (2014) Pesticides as Endocrine Disruptors in South Africa: Laboratory and Field Studies. WRC Report No. 1932/1/14 ISBN 978-1-4312-0532-5, 1-159 https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/1932-1-141.pdf

| (SA 53) |
|---------|
| WRC 1   |

151 J.M. Dabrowski (2015) Investigation of the Contamination of Water Resources by Agricultural Chemicals and the Impact on Environmental Health Volume 1: Risk Assessment of Agricultural Chemicals to Human and Animal Health. WRC Report No. 1956/1/15 ISBN 978-1-4312-0711-4, 1-249

https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/1956-1-151.pdf (SA 54)

WRC 2

152 Brent Newman, Sumaiya Arabi, Steven Weerts (2015) PREVALENCE AND SIGNIFICANCE OF ORGANIC CONTAMINANTS AND METALS IN AQUATIC ECOSYSTEMS IN THE ETHEKWINI AREA OF KWAZULU-NATAL WRC Report No. 1977/1/15 ISBN 978-1-4312-0662-9, 1-212 https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/1977-1-14.pdf (SA 55) WRC 3

153 Emmanuel I. Iwuoha and Rasaq A. Olowu (2015) Ultra-sensitive electrochemical nanobiosensor for the determination of 17-betaestradiol in municipal wastewater (ENDOTEK). WRC Report No 1999/1/14 ISBN 978-1-4312-0645-2, 1-48, https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/1999-1-14.pdf

(SA 56)

WRC 4

154. GF MATCHER, PW FRONEMAN, RA DORRINGTON (2015) AQUATIC MICROBIAL DIVERSITY: A SENSITIVE AND ROBUST TOOL FOR ASSESSING ECOSYSTEM HEALTH AND FUNCTIONING. WRC Report No 2038/1/14 ISBN 978-1-4312-0643-8, 1-57

https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2038-1-14.pdf (SA 57)

## WRC 5

155 TG Downing and S Downing (2014) Environmental modulation and metabolism of cyanobacterial  $\beta$ -N-methylamino-L-alanine WRC Report No. 2065/1/14 ISBN 978-1-4312-0567-7, 1-39, July

 $\underline{https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2065-1-14.pdf$ 

## (SA 58)

WRC 6

156 Ndeke Musee, Mary Ondiaka, Annie Chimphango, Chris Aldrich (2015) MODELLING THE FATE, BEHAVIOUR AND TOXICITY OF ENGINEERED NANOMATERIALS IN AQUATIC SYSTEMS. WRC Report No. 2107/1/14 ISBN 978-1-4312-0608-7. 1-89

https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2107-1-14.pdf

(SA 59)

WRC 7

157 OJ Okonkwo, PBC Forbes, DOA Odusanya, M Mnisi (2015) SCREENING STUDY TO DETERMINE THE DISTRIBUTION OF COMMON BROMINATED FLAME RETARDANTS IN WATER. WRC Report No. 2153/1/15, ISBN 978-1-4312-0741-1, 1-104

https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2153-1-15.pdf

(SA 60) WRC 8

158 Brenda Moodley, Grace Birungi, Patrick Ndungu (2016) Detection and Quantification of Emerging Organic Pollutants in the Umgeni and Msunduzi Rivers. WRC Report No. 2215/1/16, ISBN 978-1-4312-0864-7, 1-159 https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2215-1-16.pdf

```
(SA 61)
```

WRC 9

159 Dr NH Aneck-Hahn, Mrs MC Van Zijl, Prof C de Jager, Ms H Simba and Ms S Ngcobo (2017) Extending the EDC Toolbox 1 to include thyroid and androgenic bioassays. WRC Report No. 2303/1/17. ISBN 978-1-4312-0924-8, 1-28

https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2303-1-17.pdf

<mark>(SA 62)</mark> WRC 10

160 O. Adegoke, J.M. Dabrowski, H. Montaseri, S.A. Nsibande, F. Petersen, and P.B.C. Forbes (2017) DEVELOPMENT OF NOVEL FLUORESCENT SENSORS FOR THE SCREENING OF EMERGING CHEMICAL POLLUTANTS IN WATER. WRC Report No. 2438/1/17, ISBN 978-1-4312-0936-1, 1-223

https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2438-1-17.pdf

(SA 63)

WRC 11

161 NJ Griffin, ON Odume, PK Mensah and CG Palmer (2019) Benchmarking a Decision Support System for Aquatic Toxicity Testing. WRC Report No. 2445/1/19, ISBN 978-0-6392-0108-5. 1-61
https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2445\_final1.pdf
(SA 64)
WRC 12

162 MAA Coetzee, MNB Momba, GM Kibambe, KT Thobela, T Kgositau, P Mahlangu (2018) The removal of endocrine disrupting com https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2474%20final.pdfpounds by wastewater treatment plants. WRC Report No. 2474/1/18, ISBN 978-0-6392-0117-7, 1-55

https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2474%20final.pdf

(SA 65)

WRC 13

163 Vimbai Mhuka, Simiso Dube, Ramganesh Selvarajan, Mathew M Nindi (2020) EMERGING AND PERSISTENT CONTAMINANTS/PATHOGENS: DEVELOPMENT OF EARLY WARNING SYSTEM AND MONITORING TOOLS. Report no. 2516/1/20, ISBN 978-0-6392-0140-5, 1-138

https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2516\_final.pdf (SA 66)

WRC 14

164 CC Bezuidenhout, LG Molale-Tom, C Mienie, C Ateba, K Tsholo1, R Kritzinger, MTA Plaatjie, N Mahali, TJ Sanko1, T De Klerk, L Chidamba, RMP Horn (2019) ANTIBIOTIC-RESISTANT BACTERIA AND GENES IN DRINKING WATER Implications for drinking water production and quality monitoring. WRC Report No. 2585/1/19. ISBN 978-0-6392-0120-7. Pages 1-129. Water Research Commission

https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2585\_final.pdf

```
(SA 67)
```

WRC 15

165 H Montaseri, SA Nsibande and PBC Forbes (2019) DEVELOPMENT OF NOVEL FLUORESCENT SENSORS FOR THE SCREENING OF EMERGING CHEMICAL POLLUTANTS IN WATER. WRC Report No. 2752/1/19, ISBN 978-0-6392-0090-3. Pages 1-141. Water Research Commission

https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2752%20final.pdf

#### (SA 68)

WRC 16

166. P Singh, A Nel (2017) A comparison between *Daphnia pulex* and *Hydra vulgaris* as possible test organisms for agricultural runoff and acid mine drainage toxicity assessments. Water SA Vol. 43 No. 2, 323-332 <u>http://dx.doi.org/10.4314/wsa.v43i2.15</u> (SA 69)

167 E Kampire, G Rubidge, JB Adams, L Human (2016) Congene profiles of polychlorinated biphenyls and the effect on marine mussels at an outfall site, Port Elizabeth, South Africa. Water SA Vol. 42 No. 3, 496-504 <u>http://dx.doi.org/10.4314/wsa.v42i3.16</u> (SA 70)

168 Annatoria Chinyama, George M. Ochieng, Jacques Snyman, Innocent Nhapi (2016) Occurrence of cyanobacteria genera in the Vaal Dam: implications for potable water production. Water SA Vol. 42 No. 3,415-420 http://dx.doi.org/10.4314/wsa.v42i3.06 (SA 71) 169 Zakaria A Mohamed (2016) Breakthrough of *Oscillatoria limnetica* and microcystin toxins into drinking water treatment plants – examples from the Nile River, Egypt. Water SA Vol. 42 No. 1, 161-165 <u>http://dx.doi.org/10.4314/wsa.v42i1.16</u> (SA 72)

170 LP Lynch, F Jirsa, A Avenant-Oldewage (2016) Trace element accumulation and human health risk assessment of *Labeo capensis* (Smith, 1841) from the Vaal Dam reservoir, South Africa. Water SA Vol. 42, 328-336 http://dx.doi.org/10.4314/wsa.v42i2.16 (SA 73)

171 C Sparks, J Odendaal, R Snyman (2017) Metal concentrations in intertidal water and surface sediment along the west coast of the Cape Peninsula, Cape Town, South Africa. Water SA Vol. 43, 186-191 <u>http://dx.doi.org/10.4314/wsa.v43i1.03</u> (SA 74)

172 Hrenovic, M Ganjto, I Goic-Barisic (2017) Carbapenem-resistant bacteria in a secondary wastewater treatment plant Water SA Vol. 43 No. 2 http://dx.doi.org/10.4314/wsa.v43i2.02 (SA 75)

173 E Kampire, G Rubidge, JB Adams, L Human (2016) Congener profiles of polychlorinated biphenyls and the effect on marine mussels at an outfall site, Port Elizabeth, South Africa. Water SA Vol. 42, 559-570, No. 3 http://dx.doi.org/10.4314/wsa.v42i3.16 (SA 76)

174 P Singh, A Nel, JF Durand (2017) The use of bioassays to assess the toxicity of sediment in an acid mine drainage impacted river in Gauteng (South Africa). Water SA Vol. 43 No. 4, 673-683 http://dx.doi.org/10.4314/wsa.v43i4.15 (SA 77) 175 Lawrence Mzukisi Madikizela, Luke Chimuka (2017) Simultaneous determination of naproxen, ibuprofen and diclofenac in wastewater using solid-phase extraction with high performance liquid chromatography. Water SA Vol. 43, 264-274, No. 2 http://dx.doi.org/10.4314/wsa.v43i2.10 (SA 78)

176 H Wanke, JS Ueland, MHT Hipondoka (2017) Spatial analysis of fluoride concentrations in drinking water and population at risk in Namibia. Water SA Vol. 43 No. 3, 413-422 http://dx.doi.org/10.4314/wsa.v43i3.06 (SA 79)

177 TB Chokwe, JO Okonkwo, LL Sibal (2017) *Review* Distribution, exposure pathways, sources and toxicity of nonylphenol and nonylphenol ethoxylates in the environment. Water SA Vol. 43 No. 4, 529-542 <u>http://dx.doi.org/10.4314/wsa.v43i4.01</u> (SA 80)

178 Edward Archer, Gideon M Wolfaardt, Johannes H van Wyk (2017) *Review* Pharmaceutical and personal care products (PPCPs) as endocrine disrupting contaminants (EDCs) in South African surface waters. Water SA Vol. 43 No. 4: 684-706 http://dx.doi.org/10.4314/wsa.v43i4.16

#### (SA 81)

(SA 83)

http://dx.doi.org/10.4314/wsa.v43i4.16

179 OM Fayemiwo, MO Daramola, K Moothi (2017) *Review* BTEX compounds in water – future trends and directions for water treatment. Water SA Vol. 43 No. 4 : 602-613 http://dx.doi.org/10.4314/wsa.v43i4.08 (SA 82)

180 E Gakuba, B Moodley, P Ndungu, G Birungi (2018) Partition distribution of selected organochlorine pesticides in water, sediment pore water and surface sediment from uMngeni River, KwaZulu-Natal, South Africa. Water SA Vol. 44 No. 2: 232-249

http://dx.doi.org/10.4314/wsa.v44i2.09

181 Somandla Ncube, Nikita T. Tavengwa, Ewa Cukrowska, Luke Chimuka (2017). DEVELOPMENT AND VALIDATION OF NOVEL EXTRACTION TECHNIQUES FOR THE DETERMINATION OF TOTAL AND BIOAVAILABLE POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) IN WASTEWATER AND WASTEWATER SLUDGE. Report to the Water Research Commission. WRC Report No. 7025/1/17, ISBN 978-1-4312-0894-4: 1-89.

https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/7025-1-17.pdf

#### (SA 84)

WRC 17

182 Dr Abayneh Ambushe (2019) A Risk Based Assessment of Potentially Toxic Elements and their Species in Selected Water Systems. 12 September 2019, 4th WRC Symposium

https://wrcwebsite.azurewebsites.net/wp-

content/uploads/mdocs/A%20Risk%20Based%20Assessment%20of%20Potentially%20Toxic%20Elements%20and%20their%20Spec ies%20in%20Selected%20Water%20Systems%20in%20Limpopo%20Province.pdfLimpopo Province.

(SA 85)

183 L Petrik (2019) Addressing emerging substances of concern in water recycling and reuse. WRC Symposium, Sandton Convention Centre. Session 13.

file:///H:/CECs%20gaps%20review%20paper%20files%20Feb2021/Addressing%20emerging%20substances%20of%20concern%20in%20water%20recycling%20and%20reuse.pdf

#### (SA 86)

184 OJ Okonkwo (2019) Chemicals of emerging concern – identification and quantification tools. Power point presentation, 2019 4<sup>th</sup> WRC Symposium, 11-13 Septemer. Sandton Convention Centre

https://www.wrc.org.za/wp-

content/uploads/mdocs/CHEMICALS% 200F% 20 EMERGING% 20 CONCERN% 20 IDENTIFICATION% 20 AND% 20 QUANTIFICATION% 20 TOOLS.pdf

#### (SA 87)

185 EFC Chaúque, JN Zvimba, JC Ngila, N Musee , A Mboyi, MNB Momba (2016) FATE AND BEHAVIOUR OF ENGINEERED NANOPARTICLES IN SIMULATED WASTEWATER AND THEIR EFFECT ON MICROORGANISMS WRC Report No. KV 350/16, ISBN 978-1-4312-0762-6. 1-126. https://wrc.org.za/wp-content/uploads/mdocs/KV%20350-16.pdf



186. CC Bezuidenhout, G O'Reilly, MV Sigudu, EJ Ncube (2016) A Scoping Study on the Levels of Antimicrobials and Presence of Antibiotic Resistant Bacteria in Drinking Water. WRC Report No. KV 360/16, ISBN 978-1-4312-0823-4
https://www.wrc.org.za/wp-content/uploads/mdocs/KV%20360.pdf
(SA 89)
WRC 19

187 Khaya Mgaba, Nelson Odume, Neil Griffin, Paul Mensah (2019) METHOD DEVELOPMENT FOR MICROPLASTICS TOXICITY TESTING IN SOUTH AFRICAN FRESHWATER RESOURCES. 4<sup>th</sup> WRC Symposium https://www.wrc.org.za/wpcontent/uploads/mdocs/METHOD%20DEVELOPMENT%20for%20microplastics%20toxicity%20TESTING%20IN%20SOUTH%20 AFRICAN%20freshwater%20RESOURCES.pdf (SA 90)

188 C Bezuidenhout (2019) Microplastics and pharmaceuticals as drivers for antimicrobial resistance in the environment. WRC Symposium, 11-13 September 2019

https://wrcwebsite.azurewebsites.net/wp-

<u>content/uploads/mdocs/Microplastics%20and%20pharmaceuticals%20as%20drivers%20for%20antimicrobial%20resistance%20in%2</u> <u>Othe%20environment.pdf</u>

## (SA 91)

H Bouman, K Minnar, C Bezuidenhout, C Verster. (2018) MICROPLASTICS IN FRESHWATER WATER ENVIRONMENTS A SCOPING STUDY, WRC Report No.2610/1/18 https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2610-1-18.pdf WRC 20

189 SS Marais, NG Ndlangamandla, DA Bopape, WF Strydom, W Moyo, N Chaukura, AT Kuvarega, L de Kock, BB Mamba, TAM Msagati, TI Nkambule (2018) NATURAL ORGANIC MATTER (NOM) IN SOUTH AFRICAN WATERS VOLUME I: NOM FRACTIONATION, CHARACTERISATION AND FORMATION OF DISINFECTION BY-PRODUCTS Report No. 2468/1/18 https://www.wrc.org.za/wp-content/uploads/mdocs/2468\_FinalReporVolI.pdf (SA 92) WRC 21

190 J.M. Dabrowski (2015) Investigation of the contamination of water resources by agricultural chemicals and the impact on environmental health. Volume 2: Prioritising human health effects and mapping sources of agricultural pesticides used in South Africa (WRC Report No. TT 642/15) WATER RESEARCH COMMISSION, 1-94 <u>https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/TT% 20642.pdf</u> (SA 93) WRC 22

Dabrowski JM (2015). Investigation of the contamination of water resources by agricultural chemicals and the impact on environmental health Volume 1: Risk assessment of agricultural chemicals to human and animal health (WRC Report No. 1956/1/15) https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/1956-1-151.pdf WRC 23

191 Brent Newman, Sumaiya Arabi, Steven Weerts, Rialet Pieters, Natasha Vogt. (2015) Prevalence and significance of organic contaminants and metals in aquatic ecosystems in the eThekwini area of KwaZulu-Natal. WRC Report No. 1977/1/15) https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/1977-1-14.pdf

# (SA 94)

**WRC 24** 

192 PJ Welz, M Le Roes-Hill, C Swartz (20117) Natsurv 6: Water and wastewater management in the edible oil industry (Edition 2) WRC Report No. TT 702/16,

https://www.wrc.org.za/mdocs-posts/natsurv-6-water-and-wastewater-management-in-the-edible-oil-industry-edision-2/ (SA 95)

WRC 25

193 TB Chokwe, JO Okonkwo, LL Sibali, EJ Ncube (2015) Improved derivatization protocol for simultaneous determination of alkylphenol ethoxylates and brominated flame retardants followed by gas chromatography–mass spectrometry analyses. Water SA Vol. 41 No. 2 WISA 2014 Special Edition 2015.

http://dx.doi.org/10.4314/wsa.v41i2.03

## (SA 96)

194 Delcarme, B.A., Daries, L.M., Natus, M., Mpokopi, A. & Mkuyana, B (2018) Combined effect of urbanisation, industrialization and population growth on water quality of the Palmiet River and its tributaries in the Overberg West sub-catchment of the Breede-Gouritz water management area: An integrated catchment risk assessment. WRC Report no. TT 739/17, 2018 <u>https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/TT%20739\_final%20web.pdf</u> (SA 97) WRC 26

195 Wihan Pheiffer, , Rialet Pieters, , Bettina Genthe, , Laura Quinn, , Henk Bouwman, Nico Smit (2016) Polycyclic aromatic hydrocarbons (PAHs) in the aquatic ecosystems of Soweto/Lenasia, WRC Report No. 2422/1/16, https://wrc.org.za/wp-content/uploads/mdocs/2242-1-16.pdf

#### <mark>(SA 98)</mark> WRC 27

196 J.M. Dabrowski (2015) Investigation of the contamination of water resources by agricultural chemicals and the impact on environmental health Volume 1: Risk assessment of agricultural chemicals to human and animal health, WRC Project K5/1956 (Report No. 1956/1/15)

https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/1956-1-151.pdf

# (SA 99)

WRC 28

197 CD Swartz, B Genthe, JG Menge, CJ Coomans, G Offringa (2015) DIRECT RECLAMATION OF MUNICIPAL WASTEWATER FOR DRINKING PURPOSES. *Volume 1: Guidance on Monitoring, Management and Communication of Water Quality.* WRC Report No. TT 641/15 https://www.wrc.org.za/wp-content/uploads/mdocs/TT%20641.pdf (SA 100) WRC 29

198 CD Swartz, G Swanepoel, PJ Welz, C Muanda, A Bonga (2017) NATSURV 8, Water and Wastewater Management in the Laundry Industry, (Edition 2). WRC Report No. TT 703/16

https://www.researchgate.net/publication/327933070\_NATSURV\_8\_Water\_and\_wastewater\_management\_in\_the\_laundry\_industry (SA 101)

file:///H:/CECs%20gaps%20Refs%20pdf/198%20wrc%20LaundaryNATSURVTT703web%20(1).pdf WRC 30

199 Marlene van der Merwe-Botha, Bertie Steytler, Peter Wille (2017) NATSURV 12 Water and Wastewater Management in the Paper and Pulp Industry, (Edition 2), WRC Report No. TT 704/16

https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/TT%20704-16.pdf (SA 102)

WRC 31

200 Marlene van der Merwe-Botha, Bertie Steytler, Peter Wille (2017) NATSURV 17 Water and Wastewater Management in the Iron and Steel Industry, (Edition 1). WRC Report No. TT 705/16 https://wrc.org.za/wp-content/uploads/mdocs/TT%20705%20web.pdf

(SA 103) WRC 32

201 M. Le Roes-Hill, C. Muanda, J. Rohland, K. Durrell (2017) NATSURV 13, WATER AND WASTEWATER MANAGEMENT IN THE TEXTILE INDUSTRY (EDITION 2) . WRC Report No. TT 724/17 https://wrc.org.za/wp-content/uploads/mdocs/TT%20724\_17%20web.pdf (SA 104) WRC 33

202 CD Swartz, B Genthe, J Chamier, LF Petrik, JO Tijani, A Adeleye, CJ Coomans, A Ohlin, D Falk, JG Menge (2018)

EMERGING CONTAMINANTS IN WASTEWATER TREATED FOR DIRECT POTABLE REUSE: THE HUMAN HEALTH RISK PRIORITIES IN SOUTH AFRICA. VOLUME I: A CONCISE RESEARCH REPORT. Report No. TT 742/1/17 ISBN 978-1-4312-0954-5. 1-64

https://www.wrc.org.za/wp-content/uploads/mdocs/TT% 20742% 20Vol% 201% 20web.pdf

(SA 105)

WRC 34

203 CD Swartz, B Genthe, J Chamier, LF Petrik, JO Tijani, A Adeleye, CJ Coomans, A Ohlin, D Falk and JG Menge (2018) EMERGING CONTAMINANTS IN WASTEWATER TREATED FOR DIRECT POTABLE RE-USE: THE HUMAN HEALTH RISK PRIORITIES IN SOUTH AFRICA VOLUME II: A PRIORITIZATION FRAMEWORK FOR MONITORING CONTAMINANTS OF EMERGING CONCERN IN RECLAIMED WATER FOR POTABLE USE WRC Report No. TT 742/2/17, 1-83

https://www.wrc.org.za/wp-content/uploads/mdocs/TT%20742%20Vol%202%20web.pdf

```
(SA 106)
WRC 35
```

204 CD Swartz, B Genthe, J Chamier, LF Petrik, JO Tijani, A Adeleye, CJ Coomans, A Ohlin, D Falk, JG Menge (2018) EMERGING CONTAMINANTS IN WASTEWATER TREATED FOR DIRECT POTABLE RE-USE: THE HUMAN HEALTH RISK PRIORITIES IN SOUTH AFRICA VOLUME III: OCCURRENCE, FATE, REMOVAL AND HEALTH RISK ASSESSMENT OF CHEMICALS OF EMERGING CONCERN IN RECLAIMED WATER FOR POTABLE REUSE WRC Report no. TT 742/3/17, 1-99 https://www.uni-wh-ieem.de/wp-content/uploads/2021/04/5\_Potable-Water-Reuse-Risks-ZA.pdf

(SA 107)

WRC 36

205 E Archer (2019) Urban wastewater epidemiology: Evaluating human exposure to emerging substances of concern. Power Point. 4<sup>th</sup> WRC Symposium, Sandton Convention centre, 11-13 Sept. 2019

https://wrcwebsite.azurewebsites.net/wp-

content/uploads/mdocs/Urban%20Wastewater%20Epidemiology%20Evaluating%20Human%20Exposure%20to%20Emerging%20Substances%20of%20Concern.pdf

(SA 108)
206 Professor AI Okoh. (2018) Cholera Monitoring and Response Guidelines. The Water Research Commission Report: Report No 2432/1/18

https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2432%20Volume%201.pdf (SA 109) WRC 37

PROF. AI OKOH (2018) A MANUAL FOR THE MONITORING OF CHOLERA AND NON-CHOLERA CAUSING VIBRIO PATHOGENS IN WATER, VEGETABLES AND AQUATIC ANIMALS, WRC Report No TT 773/18 https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/TT%20773\_final%20web.pdf WRC 38

E Ubomba-Jaswa (2019), Water Quality Monitoring and Public Health. https://wrcwebsite.azurewebsites.net/wpcontent/uploads/mdocs/Water%20Quality%20Monitoring%20and%20Public%20Health%20Paper.pdf

207 Wihan Pheiffer, Rialet Pieters, Bettina Genthe, Laura Quinn, Henk Bouwman, Nico Smit (2016) Polycyclic aromatic hydrocarbons (PAHs) in the aquatic ecosystems of Soweto/Lenasia. WRC Report No. 2422/1/16: https://wrc.org.za/wp-content/uploads/mdocs/2242-1-16.pdf)

(SA 110) WRC 39

 $Determining the presence of PAHs in aquatic systems of Soweto/Lenasia: https://www.wrc.org.za/wp-content/uploads/mdocs/WIN\%201_PAHs\%20in\%20Soweto\%20aquatic\%20systems.pdf$ 

208 L de Bruine (2017) Feature WATER AND HEALTH: Whats in your drinking water?. Feature, The Water Wheel November/December 2017, 26-28. https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/WW%20Nov\_Dec%202017\_web.pdf (SA 111)

209 J Bonthuys (2018) Cover story: Emerging pollutants: Study explores microplastic pollution. Cover story, The Water Wheel January/February 2018, Volume 17, Number 1, 12-15

https://www.wrc.org.za/wp-content/uploads/mdocs/WW Jan-Feb2018 web.pdf (SA 112)

210 CC Bezuidenhout1, G O'Reilly, MV Sigudu, EJ Ncube (2016) A Scoping study on the levels of antimicrobials and presence of antibiotic resistant bacteria in drinking water. WRC Report No. KV 360/16. https://www.wrc.org.za/wp-content/uploads/mdocs/KV%20360.pdf

(SA 113)

**WRC 40** 

211 AI Okoh (2018) Cholera Monitoring and Response Guidelines WRC Report No 2432/1/18 https://www.wrc.org.za/wp-content/uploads/mdocs/2432%20Volume%201.pdf (SA 114) WRC 41

212 AI Okoh (2018) A MANUAL FOR THE MONITORING OF CHOLERA AND NON-CHOLERA CAUSING VIBRIO PATHOGENS IN WATER, VEGETABLES AND AQUATIC ANIMALS. WRC Report No TT 773/18, ISBN 978-0-6392-0062-0. https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/TT 773 final web.pdf (SA 115)

## **WRC 42**

213 N Potgieter, TG Barnard, LS Mudau, AN Traore (2018) THE EPIDEMIOLOGY AND COST OF TREATING DIARRHOEA IN SOUTH AFRICA. Volume 1 Prevalence of diarrheagenic pathogens in water sources in the Vhembe District of the Limpopo Province. WRC Report No. TT 760/18, ISBN 978-0-6392-0026-2 https://www.wrc.org.za/wp-content/uploads/mdocs/TT%20760%20web%20new.pdf

214 (2015) Water Pollution. Exploring microbial pathogens in water resource sediments. May 2015. Microbial Pathogens in Water Resource Sediments: their Dynamics, Risks and Management. Technical brief

https://wrcwebsite.azurewebsites.net/wpcontent/uploads/mdocs/TB\_2169\_Modelling%20pathogen%20loads%20in%20aquatic%20systems.pdf WRC Report No. 2169/1/15 (SA 117) WRC 44

 Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.

2.

- Brusic V, Rudy G, Honeyman G, Hammer J, Harrison L (1998) Prediction of MHC class II- binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 14: 121-130.
- <mark>4.</mark>
- Doroshenko V, Airich L, Vitushkina M, Kolokolova A, Livshits V, et al. (2007) YddG from Escherichia coli promotes export of aromatic amino acids. FEMS Microbiol Lett 275: 312-318.

| Study/  | Class            | Compounds -      | Matrix      | Sampling     | Analytical | Targeted    | Accurac | Reference     |
|---------|------------------|------------------|-------------|--------------|------------|-------------|---------|---------------|
| report/ |                  | examples         | analysed    | X = Grab     | Method/s   | (T)/        | y/      |               |
| Number  |                  | _                | -           | $\sqrt{-1}$  | used       | Non-target  | PTS-    |               |
|         |                  |                  |             | Composite    | (mv)       | NT (Screen) | similar |               |
| 1/      | PPCPs, ECs:      | Ibuprofen        | Water,      | X            | X          | Т           | Х       | 1             |
| Review  | analgesics,      | Amoxicillin      | suspended   |              |            |             |         | J Wilkinson   |
|         | antibiotics,     | Fluoxetine       | solid,      |              |            |             |         | et al, 2017   |
|         | antineoplastics, | Tamoxifen        | biosolid,   |              |            |             |         | (review)      |
|         | beta-blockers,   | 4-Nonylphenol    | sediment    |              |            |             |         |               |
|         | perfluorinated   | 17-Alpha-        |             |              |            |             |         |               |
|         | compounds,       | ethinylestradiol |             |              |            |             |         |               |
|         | personal care    | Bezafibrate      |             |              |            |             |         |               |
|         | products,        | Linalool         |             |              |            |             |         |               |
|         | plasticisers     | Perfluoroocta=   |             |              |            |             |         |               |
|         |                  | noic acid        |             |              |            |             |         |               |
|         |                  | Bisphenol-A      |             |              |            |             |         |               |
|         |                  | Benzophenone-    |             |              |            |             |         |               |
|         |                  | 4                |             |              |            |             |         |               |
| 2       | ]ECs;            | 17-beta-         | Wastewater, | $\checkmark$ | High       | Τ,          | Х       | 2 B Petrie et |
| Review  | Pharmaceutical   | Estradiol        | Surface     |              | resolution | S           |         | al, 2015      |
|         | s:               | Propranolol,     | water       |              | MS         |             |         | (review)      |
|         | NSAIDS,          | Carbamazepine    | (Biosolid,  |              | (QTOF,     |             |         |               |
|         | beta- blockers,  | Diclofenac       | amended     |              | orbitrap   |             |         |               |
|         | anti-            | Clofibric acid   | soil,       |              | technology |             |         |               |
|         | depressants,     | Ranitidine       | River       |              | )          |             |         |               |
|         | antiepileptic    | Furosemide       | sediment,   |              | 1          |             |         |               |
|         | (Carbamazepin    | Bezafibrate      | Particulate |              |            |             |         |               |
|         | e)               | Fluoxetine       | phase)      |              |            |             |         |               |
|         | Metabolites      | Valsartan        |             |              |            |             |         |               |

## Table S2 All Raw data capture from all the References

| 3          | CECs:<br>pharmaceutical<br>s, pesticides                                                      | TheophyllineTramadolCodeineDiazepamEphedrineAmoxicillinTamoxifenMDMACocaineNicotineBisphenol A1-BenzophenoneMethylparabenFluconazole | Water,<br>aquatic<br>ecosystems, | X | X                                                                    | NT      | X | 3<br>J van Gils et<br>al, 2019     |
|------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---|----------------------------------------------------------------------|---------|---|------------------------------------|
|            | s, pesticides                                                                                 |                                                                                                                                      | river basins,<br>surface water   |   |                                                                      |         |   | ai, 2017                           |
| 4<br>Ghana | Perfluoroalkyl<br>acids                                                                       |                                                                                                                                      | river basin,<br>tap water        | Х | HPLC-<br>MS/MS<br>2                                                  | Т       | X | 4<br>SK<br>Essumang et<br>al, 2017 |
| 5          | Chlorinated<br>and<br>brominated<br>contaminants,<br>and their<br>transformation<br>products, | Flame retardants,<br>Poly=<br>brominated p-<br>dioxins and<br>furans:<br>BDE-47<br>PBDE,<br>TCC, TCS                                 | Aquatic<br>environment           |   | GC-MS,<br>GC-<br>MS/MS,<br>GC-<br>HRMS,<br>GC-QQQ-<br>FT-ICR-<br>MS, | T<br>NT | X | 5<br>SL Badea et<br>al, 2020       |

| Personal | care | GC-Q-     |  |
|----------|------|-----------|--|
| products |      | TOF-      |  |
| F        |      | HRMS,     |  |
|          |      | APGC-     |  |
|          |      | TOF-      |  |
|          |      | HRMS,     |  |
|          |      | GCXGC-    |  |
|          |      | TOF       |  |
|          |      | HRMS,     |  |
|          |      | UHPLC-    |  |
|          |      | TOF-      |  |
|          |      | HRMS,     |  |
|          |      | LC-       |  |
|          |      | MS/MS,    |  |
|          |      | UPLC-     |  |
|          |      | MS/MS,    |  |
|          |      | UHPLC-    |  |
|          |      | orbitrap- |  |
|          |      | HRMS,     |  |
|          |      | LC-Q-     |  |
|          |      | orbitrap  |  |
|          |      | HRMS,     |  |
|          |      | LC-IM-Q-  |  |
|          |      | TOF-      |  |
|          |      | HRMS,     |  |
|          |      | LC-APPI-  |  |
|          |      | orbitrap  |  |
|          |      | HRMS,AP   |  |
|          |      | GC-APCI-  |  |
|          |      | QQQ-MS-   |  |
|          |      | MS        |  |
|          |      | 1113      |  |

|             |                                                                                                                                                                               |                                                                                                                                                   |                                                                                                                                     | 3                                                                                            |   |   |                                                    |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---|---|----------------------------------------------------|
| 6<br>Review | Non-nutritive<br>artificial<br>sweeteners                                                                                                                                     | Aspartame,<br>Cyclamate,<br>Saccharin,<br>Sucralase                                                                                               | Surface<br>Tap<br>Groundwater<br>Sweater<br>Lake<br>atmosphere                                                                      | GC-MS,<br>LC-MS,<br>LC-TOF-<br>MS,<br>LC-<br>MS/MS,<br>IC-MS/MS<br>4                         | Т |   | 6<br>SM Praveena<br>et al 2019<br>(review)         |
| 7<br>Review | Microplastics,<br>Pharmaceutical<br>s,<br>Personal care<br>products,<br>Bisphenol A,<br>Phthalates-<br>Alkylphenols,<br>Perfluoroalkyl<br>substances                          | Bisphenol A,<br>Dimethyl<br>phthalate,<br>Nonylphenol,<br>Perfluoro=<br>dodecanoic<br>acid                                                        | bottled water                                                                                                                       | various                                                                                      | Т |   | 7<br>R<br>Akhbarizade<br>h et al, 2020<br>(review) |
| 8<br>Review | Pharmaceutical<br>s and Personal<br>Care products:<br>psychiatrics<br>and stimulants,<br>analgesics/anti<br>-inflammatory<br>drugs,<br>antibiotics,<br>anti(retro)viral<br>s, | Paracetamol,<br>Carbamezapine<br>, Lamivudine,<br>Sulfamethoxaz<br>ole,<br>Valsartan<br>17-beta-<br>Estradiol,<br>Sulfadoxin,<br>Triclosan<br>DDT | African<br>aquatic<br>environment:<br>wastewater,<br>sludge,<br>surface<br>water,<br>sediment,<br>groundwater,<br>drinking<br>water | HPLC-<br>UV/DAD/<br>PDA<br>GC-ECD,<br>HPLC-<br>MS/MS/Q<br>TOF/HRM<br>S,<br>GC-<br>TOFMS<br>5 | Т | X | 8<br>KO K'oreje<br>et al, 2020<br>(review)         |

|             | cardiovascular<br>drugs,<br>hormones,<br>other drugs;<br>Organochlorin<br>e pesticides                                                                                                                     |                                                                                                              |                                                     |   |                                   |   |   |                                                        |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---|-----------------------------------|---|---|--------------------------------------------------------|
| 9<br>Review | CECs:<br>Natural and<br>synthetic<br>hormones,<br>pharmaceutical<br>s, personal care<br>products,<br>EDCs, PFAS                                                                                            |                                                                                                              | Aquatic/<br>fresh water<br>food webs                | X | X                                 | X | X | 9<br>E Nilsen et<br>al, 2019<br>(review)               |
| 10 Review   | Personal care<br>products,<br>Preservatives,<br>anti-oxidants<br>and flavorants<br>present in<br>cosmetics and<br>cleansing<br>products<br>(toothpaste),<br>antiseptics,<br>suncreens,<br>insect repellant | Polycyclic<br>musks HHCB,<br>AHTN,<br>Endocrine<br>disruptor TCS,<br>DEET,<br>Methylparaben,<br>Benzophenone | Surface<br>water,<br>Ground<br>water,<br>Wastewater | X | X                                 | Т | X | 10<br>D Montes-<br>Grajales et<br>al, 2017<br>(review) |
| 11          | Environmental<br>ly related<br>contaminants<br>of high                                                                                                                                                     | Paraben, TCS,<br>DEET,<br>Musk ketone,<br>Benzophenone,                                                      | Surface<br>water,<br>groundwater,<br>industrial     | Х | GC-MS,<br>LC-MS<br>Triple<br>quad | X | X | 11<br>T Rasheed et<br>al, 2019                         |

|    | concern:micro-  | Penicillin,      | wastewater  |   | Linear ion      |   |   |            |
|----|-----------------|------------------|-------------|---|-----------------|---|---|------------|
|    | pollutants,     | Benzo[alpha]py   | streams     |   | trap            |   |   |            |
|    | pesticides,     | rene,            | Streams     |   | quadrupole      |   |   |            |
|    | pharmaceutical  | Dioxin,          |             |   | quadrapoie      |   |   |            |
|    | s, hormones,    | Polychlorinated  |             |   | ,<br>Quadrupol  |   |   |            |
|    | endocrine       | biphenyl,        |             |   | e-time of       |   |   |            |
|    | disruptors,     | Rhodamin B       |             |   | flight,         |   |   |            |
|    | industrially    | Methyl orange    |             |   | triple          |   |   |            |
|    | related         | intentifi orange |             |   | quadrupole      |   |   |            |
|    | synthetic dyes, |                  |             |   | quadrapoie      |   |   |            |
|    | dyes            |                  |             |   | ,<br>quadrupole |   |   |            |
|    | containing      |                  |             |   | linear ion      |   |   |            |
|    | hazardous       |                  |             |   | trap,           |   |   |            |
|    | pollutants      |                  |             |   | immunoan        |   |   |            |
|    | I               |                  |             |   | alytical        |   |   |            |
|    |                 |                  |             |   | technique,      |   |   |            |
|    |                 |                  |             |   | microbiolo      |   |   |            |
|    |                 |                  |             |   | gical           |   |   |            |
|    |                 |                  |             |   | assays,         |   |   |            |
|    |                 |                  |             |   | capillary       |   |   |            |
|    |                 |                  |             |   | electropho      |   |   |            |
|    |                 |                  |             |   | resis           |   |   |            |
|    |                 |                  |             |   | 6               |   |   |            |
| 12 | ECs             | Penicillin,      | Wastewater  | Х | Х               | Х | Х | 12         |
|    | Pharmaceutical  | Caffeine,        | Environment |   |                 |   |   | A Gogoi et |
|    | S               | Diclofenac,      | , surface,  |   |                 |   |   | al, 2018   |
|    | Personal care   | Carbamazepine    | Ground,     |   |                 |   |   |            |
|    | Products        | ,                | drinking    |   |                 |   |   |            |
|    | EDCs            | Gemfibrozil,     | _           |   |                 |   |   |            |
|    |                 | Propranolol,     |             |   |                 |   |   |            |

|    |                                                                                                                                                                                                                                                      | HHCB,<br>Triclosan<br>17-beta-<br>Estradiol<br>alkyl-p-<br>Hydroxybenzoa<br>te,                                           |                                                                                       |   |                    |       |   |                            |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---|--------------------|-------|---|----------------------------|
| 13 | Legacy<br>persistent<br>organic<br>pollutants:<br>PCBs, OCP,<br>PAHs                                                                                                                                                                                 | CB28,<br><i>o,p</i> -DDT,<br>alpha-HCH                                                                                    | Indo-Pacific<br>finless<br>porpoises<br>from Pearl<br>River<br>Estuary,<br>China      | V | GC-MS<br>7         | Т     | X | 13<br>D Gui et al,<br>2018 |
| 14 | Emerging<br>contaminants/P<br>OPs (persistent<br>organic<br>pollutants):<br>polychlorinate<br>d dibenzo-p-<br>dioxins, furans,<br>dioxin-like<br>polychlorinate<br>d biphenyls,,<br>non-dioxin-<br>like PCbs,<br>OCPs, PBDEs,<br>polychlorinate<br>d | DDT,HCH,<br>Chlordane, D5,<br>PCB8,<br>beta-<br>Hexachlorocycl<br>ohexane, 1,3,5-<br>chlorobenzene,<br>BDe47,<br>fluorene | Arctic<br>environment:<br>seaweater,<br>air, soil,<br>sediment,<br>sludge,<br>iceberg | X | GC-TOF-<br>MS<br>8 | T, NT | X | 14<br>S Lee et al,<br>2019 |

|              | naphthalenes,<br>chlorobenzene<br>s, PAHs,<br>pseudo-POPs<br>(dechlorane<br>plus), NBFRs,<br>OPFRs,<br>phthalates,<br>siloxanes,<br>synthetic musk<br>compounds,<br>benzotriazole<br>ultraviolet<br>stabilisers |                                                                                      |                                                                            |   |                                                                     |   |   |                                       |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---|---------------------------------------------------------------------|---|---|---------------------------------------|
| 15           | CECs: PPCPs,<br>EDCs, flame<br>retardants,<br>pesticides,<br>artificial<br>sweeteners                                                                                                                           | Ace<br>taminophen,<br>Estrone,<br>Brominated<br>bisphenol,<br>Atrazine,<br>Sucralose | water<br>matrices:<br>ground,<br>drinking,<br>wastewater,<br>sludge, river |   | GC-MS,<br>HPLC-<br>MS/MS,<br>LC/MS/M<br>S,<br>HPLC,<br>T, NT ?<br>9 | X | X | 15<br>M Salimi et<br>al, 2017         |
| 16<br>Review | Pyrethroid<br>insecticides                                                                                                                                                                                      | Bifenthrin,<br>Cypermethrin                                                          | Sediment                                                                   | Х | T                                                                   | X | X | 16<br>H Li et al,<br>2017<br>(review) |
| 17           | CECs:<br>Pharmaceutical<br>s, personal care                                                                                                                                                                     | Amoxicillin,<br>Triclosan,<br>Methyl                                                 | wastewater                                                                 | Х | NT                                                                  | Х | Х | 17<br>RA Hamza et<br>al, 2016         |

|    | products,<br>pesticides,<br>surfactants,<br>disinfection<br>by-products,<br>flame<br>retardants,<br>perfluorinated<br>compounds,<br>nanomaterials                                                                                                   | paraben,<br>Malathion,<br>DDT,<br>Lauryl sulfate,<br>Alkylphenol<br>ethoxylates,<br>4-Nonylphenol,<br>Chlorine,<br>Hexabromocycl<br>ododecane,<br>Perfluorooctan<br>oic acid,<br>Titanium<br>dioxide |                       |   |   |    |   |                                |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---|---|----|---|--------------------------------|
| 18 | CECs:<br>pharmaceutical<br>s, antibiotics,<br>hormnes,<br>personal care<br>products,<br>cyanotoxins,<br>engineered<br>nanomaterials,<br>anti-microbial<br>cleaning agents<br>and their<br>transformation<br>products,<br>plastics/microp<br>lastics | Microplastics,<br>anti-microbials                                                                                                                                                                    | agricultural<br>water | X | X | NT | X | 18<br>AEV Evans<br>et al, 2019 |

| 19           | Insect repellent                                                                                                               | N,N-Diethyl-                                                   | drinking                                                                                                                                      | Χ,     | GC-MS,                                    | Т         | Х | 19                                          |
|--------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------|-----------|---|---------------------------------------------|
| Review       |                                                                                                                                | m-toluamide                                                    | water,<br>surface<br>water,                                                                                                                   | POCIS  | LC-MS,<br>LC-<br>MS/MS                    |           |   | S Merel et al,<br>2016<br>(review)          |
|              |                                                                                                                                |                                                                | wastewater,<br>landfill                                                                                                                       |        | 10                                        |           |   |                                             |
|              |                                                                                                                                |                                                                | leachate,<br>ground<br>water,                                                                                                                 |        |                                           |           |   |                                             |
|              |                                                                                                                                |                                                                | drinking<br>water                                                                                                                             |        |                                           |           |   |                                             |
| 20           | Pharmaceutical<br>s, antibiotics,<br>anti(retro)viral,<br>analgesic, anti-<br>inflammatory,<br>psychiatric<br>drugs<br>residue | Diclofenac,<br>Chloramphenic<br>ol,<br>Diazepam,<br>Nevirapine | wastewater,<br>surface<br>water,<br>groundwater                                                                                               | X grab | LC-<br>magnetic<br>sector-HR-<br>MS<br>11 | T<br>(10) | X | 20<br>KO K'oreje<br>et al, 2016             |
| 21<br>Review | Anti<br>inflammatory<br>drug:<br>Diclofenac                                                                                    | Diclofenac                                                     | Surface<br>water waste<br>Water, river,<br>estuaries,<br>lakes,<br>groundwater,<br>drinking<br>water, well,<br>seawater,<br>aquifier,<br>Soil | X      | X                                         | Т         | X | 21<br>L Lonappan<br>et al, 2016<br>(review) |

| 22        | Toxaphene and<br>chlordane-<br>related<br>pesticides                                                                                                                            | CHB-50,<br>Oxychlordane                                                               | peregrine<br>falcon eggs<br>from South<br>Greenland                                       |              | GC-MS-<br>ECNI<br>12          | Т  | V | 22<br>K Vorkamp,<br>et al, 2014         |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------|-------------------------------|----|---|-----------------------------------------|
| 23        | Pharmaceutical<br>s: non-steroidal<br>anti-<br>inflammatory<br>drugs, steroid<br>hormones,<br>antibiotics,<br>psychiatric,<br>cardiovascular,<br>hypocholestero<br>laemic drugs | Ibuprofen,<br>Paroxetine,<br>Valsartan,<br>EE2,<br>Simvastatin,<br>Erythromycin       | aquatic<br>environment,<br>river, lake,<br>estuaries,<br>groundwater,<br>marine water     | X            | GC-<br>MSMS,<br>LC-MSMS<br>13 | NT | X | 23<br>M Mezzelani<br>et al, 2018        |
| 24 Review | Chiral<br>pharmaceutical<br>s, non-<br>steroidal anti<br>inflammatory<br>drugs, beta<br>blockers,<br>herbicide,<br>pesticides                                                   | Ibuprofen,<br>Fipronil,<br>Deltamethrin,<br>Propranolol,                              | Surface,<br>drinking,<br>wastewater                                                       | X            | X                             | Т  | X | 24<br>Y Zhou et al,<br>2018<br>(review) |
| 25        | Contaminants<br>of emerging<br>concern:<br>pharmaceutical<br>s, sweetener,<br>metabolite                                                                                        | Codeine,<br>Sulfamethoxaz<br>ole,<br>Diclofenac,<br>Sucralose,<br>Benzoylecgoni<br>ne | centralised<br>and on-site<br>wastewater<br>treatment<br>system<br>effluents<br>receiving | $\checkmark$ | LC<br>-MSMS<br>14             | Т  | X | 25<br>B Du et al,<br>2014               |

|    |                                                                                                    |                                            | common<br>wastewater,<br>surface water                                                                                                                 |   |                                                                                                                                   |   |   |                                              |
|----|----------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------|---|---|----------------------------------------------|
| 26 | Stimulant                                                                                          | Caffeine<br>And metabolite<br>Paraxanthine | aquatic<br>systems,<br>drinking<br>water,<br>ground<br>water,<br>surface<br>water,<br>wastewater,<br>rain water,<br>sea water                          | X | Т                                                                                                                                 | X | X | 26<br>JL<br>Rodriguez-<br>Gil et al,<br>2018 |
| 27 | Microplastics<br>and their<br>sorbed<br>contaminants,<br>endogeneous<br>additives;<br>nanoplastics |                                            | marine<br>environment,<br>sea water,<br>surface, sea<br>ice,<br>sediment,<br>marine<br>organisms,<br>food web,<br>higher order<br>predators,<br>humans | X | UV-VIS,<br>spectromet<br>ry,<br>electron<br>microscop<br>y, filed<br>flow<br>fractionati<br>on,<br>dynamic<br>light<br>scattering | X | X | 27<br>M Carberry<br>et al, 2018              |

| 28 | Plastics:<br>additives and<br>contaminants                                                                                                                                     |                                                                                                             | Aquatic<br>organisms,<br>land based<br>ecosystems,<br>land and<br>ocean<br>environment<br>ocean,           | X | X                                                                 | Т | X | 28<br>S J Barnes,<br>2019     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------|---|---|-------------------------------|
|    |                                                                                                                                                                                |                                                                                                             | human and<br>non-human                                                                                     |   |                                                                   |   |   |                               |
| 29 | Hydrophobic<br>organic<br>contaminants:Halogenated<br>flame<br>retardants,<br>synthetic<br>musks,<br>organochlorine<br>pesticides,<br>PCBs<br>(polychlorinate<br>d bi-phenyls) | HBB,<br>TCS<br>pp-DDE                                                                                       | tropical<br>urban<br>catchment:<br>water,<br>sediment,<br>biota:<br>plankton,<br>invertebrates<br>and fish | X | GC-<br>MSMS<br>15                                                 | Τ | √ | 29<br>Q Wang et<br>al, 2018   |
| 30 | Bacterial/viral<br>contaminants,<br>new chemicals,<br>metal-<br>elements,<br>pharmaceutical<br>s,<br>anthropogenic                                                             | Aluminium,<br>Clofibric acid,<br>Sulfamethoxaz<br>ole,<br>Lamivudine,<br>Estrone,<br>Giardia,<br>Adenovirus | Public source<br>and drinking<br>water<br>supplies                                                         | X | HPLC-<br>MS/MS,<br>US EPA<br>1623,<br>qPCR,<br>in vitro:<br>T47D- | Τ | X | 30<br>R Benson et<br>al, 2017 |

| 21 | waste<br>indicators,<br>hormones, dis-<br>infection<br>byproducts                                 |                                                                                                | G                                                  | V | KBluc<br>bioassay<br>16                                              | T         | V | 21                                    |
|----|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------|---|----------------------------------------------------------------------|-----------|---|---------------------------------------|
| 31 | Natural and<br>synthetic<br>estrogens;<br>estrogenic<br>activity and<br>chemical<br>concentration | Estrone,<br>17-beta-<br>Estradiol,<br>Estriol, 17-<br>alpha-Ethinyl<br>Estradiol               | Source<br>water,<br>Treated/drin<br>king waters    | X | LC-FTMS,<br>in vitro:<br>T47D-<br>KBluc<br>bioassay<br>17            | Τ         | X | 31<br>JM Conley et<br>al, 2017        |
| 32 | Per- and<br>polyfluoroalky<br>l substances                                                        | PFOS,<br>PFOA,<br>PFBS,<br>PFNA                                                                | Source<br>water,<br>Treated/<br>drinking<br>waters | X | LC-<br>MS/MS<br>18                                                   | T<br>(19) | X | 32<br>JS Boone, et<br>al, 2019.       |
| 33 | Contaminants<br>of emerging<br>concern:<br>pharmaceutical                                         | Acetaminophen<br>Fluoxetine,<br>Sulfamethoxaz<br>ole,<br>Estradiol,<br>Morphine,<br>Lamivudine | Source<br>water,<br>treated<br>drinking<br>water   | X | HPLC-<br>MS,<br>HPLC-<br>MS/MS,<br>GC-MS<br>19                       | Т         | X | 33<br>ET Furlong<br>et al, 2017       |
| 34 | ECs<br>Metals,<br>pesticides,<br>nutrients,<br>pharmaceutical<br>s, hormones,                     | Aluminum,<br>Triclocarban,<br>Norverapamil,<br>Progesterone,<br>Atrazine,                      | Source water                                       | X | HPLC-<br>MS,<br>HPLC-<br>MS/MS,<br>GC-MS;<br>EC/Effect<br>Concentrat | Τ         | X | 34<br>MS<br>Kostich,Fulo<br>ng, 2017. |

|              | perfluorinated<br>compounds                                       | para-<br>Nonylphenol,<br>Ibuprofen,<br>Atrazine,<br>Metolachlor,<br>Triclosan,<br>para-<br>Nonylphenol,<br>Ibuprofen,<br>Venlafaxine,<br>Amitriptyline, |                                                                                                                                                                               |   | ion<br>estimates<br>20           |   |   |                                                                   |
|--------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------|---|---|-------------------------------------------------------------------|
| 35           | Contaminants<br>of emerging<br>concern:<br>microbial<br>pathogens | Legionella,<br>Mycobacteria,<br>Crypto,<br>Giardia,                                                                                                     | Source<br>water,<br>treated<br>drinking<br>waters                                                                                                                             | X | USEPA<br>Method<br>1623,<br>qPCR | Τ | X | 35<br>MJ Donohue,<br>DN King,<br>Wilson,<br>2017                  |
| 36<br>Review | Pharmaceutical<br>s; NSAID s                                      | Ketoprofen                                                                                                                                              | environment,<br>raw and<br>treated<br>wastewater,<br>surface<br>water, river,<br>lake, sea,<br>sewage<br>sludge,<br>sediment,<br>soil, landfill<br>leachates,<br>ground water | X | X                                | Τ | X | 36<br>J Wang, A-qi<br>Zhao, Bing-<br>shu-He.,<br>2018<br>(review) |
| 37<br>Review | Microplastics                                                     | Microplastics                                                                                                                                           | marine<br>environment:                                                                                                                                                        | Х | Х                                | Т | X | 37                                                                |

|    |                |                                                                    | ocean, lake,<br>sea, river,<br>coastal areas,<br>Polar Region                                                                                                            |   |   |   |   | HS Auta, CU<br>Emenike, SH<br>Fauziah,<br>2017.<br>(review) |
|----|----------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|-------------------------------------------------------------|
| 38 | Antihistamines | Cimetidine,<br>Diphenylhydra<br>mine,<br>Ranitidine,<br>Loratidine | environment,<br>surface<br>waters,<br>effluents,<br>surface,<br>ground,<br>drinking,<br>reclaimed<br>water,<br>suspended<br>solid,<br>sediment,<br>invertebrate,<br>fish |   |   | Т |   | 38<br>LA<br>Kristofco,<br>BW Brooks,<br>2017                |
| 39 | CECs           | Perchlorate                                                        | Atacama<br>Desert:<br>drinking<br>water,<br>surface,<br>groundwater,<br>soil,<br>atmospheric<br>aerosol and<br>gases, eolian<br>dust,                                    | X | X | Τ | X | 39<br>Vega, M.,<br>nerenberg,<br>R., Vargas,<br>I.T., 2018. |

|    |                                                                                                              |                                                                                                                                                                                                                                                                  | fertiliser,<br>nitrate<br>deposits                                                                                 |   |                                                                     |   |   |                                                             |
|----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------|---|---|-------------------------------------------------------------|
| 40 | Pharmaceutical<br>s and Personal<br>care products<br>(PPCPs)                                                 | Erythromycin,<br>Chloramphenic<br>ol,<br>Nalidixic acid,<br>Tetracycline<br>Sulfamethoxaz<br>ole,<br>Acetaminophen<br>Atenolol,<br>Diclofenac,<br>Ibuprofen,<br>Caffeine,<br>Nalidixic acid,<br>Atenolol,<br>Aspirin,<br>Diclofenac,<br>Ketoprofen,<br>Ibuprofen | aquatic<br>environment,<br>surface<br>water,<br>drinking<br>water,<br>wastewater,<br>sediment,<br>sewage<br>sludge | X | X                                                                   | Т | X | 40<br>AJ Ebele, M<br>A-E<br>Abdallah, S<br>Harrad.,<br>2017 |
| 41 | Pharmaceutical<br>s and<br>metabolite:<br>antibiotics,<br>NSAIDs,<br>antihistamines,<br>lipid<br>regulators, | Erythromycin,<br>Sulfamethazine<br>, Norsertraline,<br>Diclofenac                                                                                                                                                                                                | Aquatic<br>fauna, fish,<br>invertebrates<br>sediment,<br>biota                                                     |   | GC-MS,<br>LC-MS<br>GC-<br>HRMS,<br>LC-<br>HRMS,<br>IC-HRMS,<br>NMR, | Т |   | 41<br>TH Miller,<br>2018                                    |

|    | anti-<br>depressants,                                                                                                                                                                                                          |                                                                                                                    |                                                   |   | FT-ion<br>cyclotron<br>resonance<br>direct<br>infusion<br>MS<br>21                                                                                                                                  |   |   |                                               |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-----------------------------------------------|
| 42 | CECs:<br>chemical and<br>microbiologica<br>l:<br>pharmaceutical<br>s,<br>anthropogenic<br>waste<br>indicators,<br>perfluoroalkyl<br>and<br>polyfluoroalky<br>l substances,<br>inorganic<br>constituents,<br>microorganism<br>s | Bupropion,<br>Bromoform,<br>Estrone,<br>PFOA,<br>PFDA,<br>Ttriclocarban,<br>Aluminium,<br>Giardia,<br>Polyomavirus | Source and<br>treated/drinki<br>ng water          | X | LC-<br>MS/MS,<br>UPLC-<br>MS/MS,<br>LC-FT-<br>MS with<br>accurate<br>mass, GC-<br>MS, LC-<br>MS,<br>USEPA<br>2005a,<br>USEPA<br>2005b,<br>USEPA<br>2005b,<br>USEPA<br>2001,<br>USEPA<br>1994,<br>22 | X | X | 42<br>ST<br>Glassmeyer<br>EF Furlong,<br>2017 |
| 43 | Pesticides:<br>Chloroacetanili<br>de herbicides:                                                                                                                                                                               | Acetochlor,<br>Alachlor,<br>Butachlor,<br>Metolachlor,                                                             | Environment<br>: soil,<br>surface,<br>groundwater | X | X                                                                                                                                                                                                   | Т | X | 43<br>SS Mohanty,<br>HM Jena,<br>2019.        |

| 44 | Legacy POPs                                                    | s-<br>Metolalochlor,<br>Pretilachlor,<br>Propachlor,<br>Propisochlor<br>Organochlorine<br>pesticides,<br>PCBs | Plasma in<br>humans                                                                                                                                                             | X | GC-<br>MS/MS<br>23     | T | X | 44<br>LA<br>Henriquez-<br>Hernandez,<br>2016,   |
|----|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------|---|---|-------------------------------------------------|
| 45 | Polychlorinate<br>d biphenyls<br>Organochlorin<br>e pesticides | HCHs,<br>DDT,<br>sum of: Aldrin,<br>Dieldrin and<br>Endrin,                                                   | Tiber River<br>and Estuary,<br>water,<br>suspended<br>particulate<br>matter,<br>sediment                                                                                        | X | GC-ECD,<br>GC-MS<br>24 | Τ | X | 45<br>P Montuori,<br>Triassi, 2016              |
| 46 | Pharmaceutical<br>s: antibiotic                                | Erythromycin                                                                                                  | Environment<br>: wastewater<br>effluent,<br>inland,<br>drinking,<br>ground,<br>estuarine and<br>coastal<br>systems,<br>sewage<br>sludge,<br>biosolid,<br>sediment,<br>tissue of | X | X                      | Τ | X | 46<br>BH<br>Schafhauser,<br>BW brooks,<br>2018. |

|    |                                                                                                       |                                                                                                                                                   | aquatic<br>organisms                                                                                                                                        |   |                                                                                                    |   |              |                                               |
|----|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------|---|--------------|-----------------------------------------------|
| 47 | Brominated<br>flame<br>retardants                                                                     | TBBPA,<br>HBCD,<br>DBDPE,<br>EBFR, PBDE                                                                                                           | food and<br>human milk:<br>seafood, fish,<br>chicken,<br>vegetable,<br>meat, egg,<br>cereals, baby<br>food                                                  | X | X                                                                                                  | Τ | $\checkmark$ | 47<br>Z Shi, L<br>Zhang, J Li,<br>Y Wu, 2018. |
| 48 | Antimicrobial<br>resistance<br>genes                                                                  | Quinolone<br>resistance<br>genes,<br>AR and ARM<br>in E Coli,<br>ESBL/Amp C,<br>Tetracycline<br>resistance gene,<br>Vancomycin<br>resistance gene | Wastewaters,<br>drinking<br>water<br>sources,<br>aquatic<br>systems,<br>waste/dump<br>landfills,<br>urban<br>residential<br>areas,<br>medical<br>facilities | X | Culture-<br>based<br>methods,<br>fluorescen<br>ce<br>microscop<br>y,<br>metageno<br>mics,<br>Qpcr, | Т | √            | 48<br>W Gwenzi,<br>et al 2018                 |
| 49 | Contaminants<br>in sewage<br>sludge:<br>chemical:<br>elements,<br>PAH, PCB,<br>PCP,<br>pharmaceutical | Selenium,<br>Benzo (a)<br>anthracene,<br>Diclofenac,<br>TiO2;<br>Polio virusi,<br>Aspergillus<br>spp, Giardia                                     | Sewage<br>sludge                                                                                                                                            | X | X                                                                                                  | Т | X            | 49<br>K<br>Fijalkowski<br>et al, 2017         |

|    | s,<br>nanoparticles;<br>biological:<br>virus, bacteria,<br>fungi,<br>protozoa,<br>helminths | lamblia,<br>Ascaris spp,<br>Legionella, E<br>Coli O157:H7 |                                                                            |   |                                                                                                            |           |   |                                |
|----|---------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------|-----------|---|--------------------------------|
| 50 | Cyanobacterial<br>blooms:<br>cyanobacteria                                                  | Microcystis<br>aeruginosa,<br>Anabaena<br>ucrainica       | Water, lakes,<br>dam, river,<br>drinking<br>water,<br>reservoir,<br>island | X | HPLC,<br>ELISA,M<br>ALDI-<br>TOF-MS,<br>Chlorophy<br>Il<br>measurem<br>ents,<br>molecular<br>methods<br>25 | Т         | X | 50<br>LL Ndlela et<br>al, 2016 |
| 51 | EDC<br>contaminants:<br>steroid<br>estrogens                                                | E1,<br>E2,<br>E3,<br>EE2                                  | Groundwater<br>, soil                                                      | X | GC-MS<br>26                                                                                                | T<br>(37) | X | 51<br>X Song et al,<br>2018    |
| 52 | Plastics and<br>microplastics                                                               | PE,<br>PP,<br>PET,<br>PVC,<br>HDPE,<br>LDPE,<br>PS,       | Marine life,<br>estuary,<br>river, lake,<br>water,<br>sediment             | X | Optical,/el<br>ectron<br>microscop<br>y, NMR,<br>FTIR,<br>raman<br>spectrosco<br>py,                       | Τ         | X | 52<br>N Lascar et<br>al, 2019  |

| 53 | Halogenated               | Hexbromobenz   | Sediment             | X | GC-        | Т | X | 53                   |
|----|---------------------------|----------------|----------------------|---|------------|---|---|----------------------|
|    | flame<br>retardants       | ene,<br>BB101, |                      |   | MSMS<br>27 |   |   | J Guo et al,<br>2019 |
|    | retardants                | Declorane 603  |                      |   | 21         |   |   | 2019                 |
| 54 | Persistent                | PFOA,          | Ocean                | X | X          | Т | X | 54                   |
|    | organic                   | Hexachlorocycl | Water, river         |   |            |   |   | R Lohman et          |
|    | pollutants;               | ohexane        |                      |   |            |   |   | al, 2014             |
|    | PAHs, PCBs,               |                |                      |   |            |   |   |                      |
|    | perfluorinated compounds, |                |                      |   |            |   |   |                      |
|    | phthalates,               |                |                      |   |            |   |   |                      |
|    | OCPs                      |                |                      |   |            |   |   |                      |
| 55 | Enterohaemorr             | EHECO157:H7    | Environment          | Х | VITEK2,    | Т | X | 55                   |
|    | hagic E Coli              | ; stx1, stx2,  | al water,            |   | multiplex  |   |   | Bolukaoto,           |
|    | O157: H7                  | antibiotic     | surface              |   | PCR,       |   |   | J.Y., et al,         |
|    | isolates;:                | resistance to  | water, run-          |   | PFGE,      |   |   | 2019                 |
|    | virulence                 | AMP, AMX,      | off water,           |   | MLST,      |   |   |                      |
|    | genes,                    | FOX, TMP       | catchment,           |   | PCR, gel   |   |   |                      |
|    | antibiotic                |                | drainage,            |   | electropho |   |   |                      |
|    | resistance<br>profiles    |                | river clinical stool |   | resis      |   |   |                      |
| 56 | Human enteric             | Faecal         | Wastewater           | X | RT-PCR     | Т | X | 56                   |
| 50 | bacteria and              | coliforms,     | waste water          | Δ | KI-I CK    | I | Λ | Osuolale, O.,        |
|    | viruses                   | E Coli,        |                      |   |            |   |   | Okoh, A.,            |
|    |                           | Rotavirus,     |                      |   |            |   |   | 2017.                |
|    |                           | Enterovirus    |                      |   |            |   |   |                      |
| 57 | Invasive                  | Salmonella     | Sub-saharan          | Х | Standard   | Т | X | 57                   |
|    | salmonella                | Salmonella     | Africa –             |   | mcrobiolo  |   |   | F Marks et           |
|    | disease and               | enterica       | children             |   | gical      |   |   | al, 2017.            |
|    | non-typhoidal             | serotype Typhi |                      |   | techniques |   |   |                      |
|    | salmonella                | (S Thyphi), S  |                      |   |            |   |   |                      |

|    | disease/pathog<br>ens                                | Enterica<br>serotype<br>Paratyphi A, B,<br>C (S Paratyphi<br>A, B, and C);<br>non-typhoidal<br>salmonella<br>(NTS) serovars |        |              |                                                                                                                                                                                             |   |   |                                |
|----|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|--------------------------------|
| 58 | Infectious<br>disease causing<br>viruses             | Nipah,<br>MERS-CoV,<br>SARS-CoV,<br>Ebola                                                                                   | Bats   | X            | X                                                                                                                                                                                           | Т | X | 58<br>Han, , X-J.,<br>2015.    |
| 59 | MultiDrug-<br>resistant (DR)<br>tuberculosis<br>(TB) | DR-TB,<br>Rifampicin-<br>resistant-TB<br>(RR-TB)                                                                            | humans |              | DST drug<br>susceptibil<br>ity testing,<br>molecular<br>diagnostic<br>assays:Xpe<br>rt<br>MTB/RIF.<br>MTBDRpl<br>us,MTBD<br>Rsl , line<br>probe<br>assays,<br>whole<br>genome<br>sequencing | Т |   | 59<br>ML Dlamini,<br>2019      |
| 60 | Mycotoxins<br>and fungi in                           | Aflatoxin $B_1$ ,<br>Fumonisin $B_2$ ,<br>Aspergillus                                                                       | Beer   | $\checkmark$ | LC-<br>MSMS,<br>microscop                                                                                                                                                                   | Т | X | 60<br>I Adekoya et<br>al, 2018 |

|    | maize-based<br>beer                                                                                                           | flavus,<br>Saccharomycer<br>evisiae                                  |                          |   | y,<br>molecular:<br>Genetic<br>Analyser<br>(BLAST<br>on NCBI)<br>28                                                        |         |   |                                      |
|----|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------|---|----------------------------------------------------------------------------------------------------------------------------|---------|---|--------------------------------------|
| 61 | Mycotoxins                                                                                                                    | Zearalenone,<br>Ochratoxin,<br>Deoxynivalenol<br>Total aflatoxin     | Cereal-based<br>products | X | ELISA,<br>TLC-DD,<br>GC-MS,<br>LC-<br>fluorescen<br>ce, LC-<br>ESI-MS,<br>LC-<br>MSMS,HP<br>LC-MS,<br>UHPLC-<br>MSMS<br>29 | Τ       | X | 61<br>AM<br>Khaneghah<br>et al, 2019 |
| 62 | Selected food<br>contaminants<br>and allergens:<br>pesticides,<br>antibiotics,<br>mycotoxins,<br>aquatic toxins,<br>allergens | Paraquat,<br>Gentamycin,<br>Aflatoxin B1,<br>Tetrodotoxin,<br>Gluten | Food                     | X | Immuno-<br>Sensors,<br>aptasensor,<br>sandwich<br>ELISA,<br>LFIA,<br>microfluidi<br>c<br>ELISA,D<br>NA<br>probes,          | T<br>NT | X | 62<br>AS Tsagkaris<br>et al, 2019    |

| 63 | Persistent<br>organic<br>pollutants and<br>plastic<br>pollution:<br>PCB, DDT, | PCB 28,<br>PBDE 28,<br>DDT,<br>CYP1A | Whale<br>sharks- skin<br>biopsies | - | MIPS,<br>DART-<br>MS,<br>Raman<br>spectrosco<br>py<br>(SERS),<br>LC-MS,<br>HRMS,<br>LC-<br>MSMS,<br>LC-<br>QTOF-<br>MS, Q-<br>Orbitrap,<br>SFC,<br>HILIC<br>30<br>GC-<br>LRMS,<br>microscop<br>y, FTIR,<br>Western<br>blot | T  | X | 63<br>MC Fossi,<br>2017 |
|----|-------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|-------------------------|
|    | PBDE, plastic<br>additives,<br>related<br>biomarkers                          |                                      |                                   |   | 31                                                                                                                                                                                                                         |    |   |                         |
| 64 | Blue mussels<br>as sentinel<br>organisms in                                   | Fluoxetine,                          | Blue mussels                      | Х | X                                                                                                                                                                                                                          | NT | Х | 64<br>J Beyer,<br>2017  |

|    | coastal<br>pollution<br>monitoring:<br>PAH, PCB,<br>metals, PBDE,<br>organotin,<br>OCP,<br>pharmaceutical<br>s,<br>alkylphenols,<br>nanoparticles,<br>microplastics | 4-Nonylphenol,<br>Ethinyl<br>estradiol,<br>TBT,<br>PCB7,<br>Hg,<br>PFOS, BDE-47                                  |            |   |                                                                   |           |   |                              |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------|---|-------------------------------------------------------------------|-----------|---|------------------------------|
| 65 | agricultural<br>contaminant:<br>EDC: synthetic<br>androgenic<br>stroid                                                                                              | 17 beta-<br>Trenbolone                                                                                           | Guppy      | X | ELISA                                                             | Т         | X | 65<br>P Tomkins,<br>2017     |
| 66 | Cyanobacterial<br>algal blooms:<br>microystin<br>producers,<br>toxins and<br>genes                                                                                  | Total<br>cyanobacteria,<br>Microcystin,<br>Microcystis<br>aeruginosa,<br>Plankothrix,<br>Anabaena,<br>mcyA, E, G | Lake water | X | Microscop<br>y, qPCR,<br>RT-qPCR,<br>LC-<br>MS/MS,<br>ELISA<br>32 | T<br>(50) | X | 66<br>J Lu et al,<br>2020    |
| 67 | Algal toxins:<br>Microcystins,<br>nodularin                                                                                                                         | Microcystin-<br>LR, Nodularin                                                                                    | Freshwater | X | UPLC-<br>MSMS<br>33                                               | Т         | X | 67<br>NH Tran et<br>al, 2020 |

| 68     | Nutrients,        | N, P, Pb,     | Stormwater    | X | Х         | NT | Х | 68         |
|--------|-------------------|---------------|---------------|---|-----------|----|---|------------|
| Review | metals, trace     | Benzene,      |               |   |           |    |   | A Muller,  |
|        | organics,         | Diuron,       |               |   |           |    |   | 2020       |
|        | PAHs, PFCs,       | BPA,          |               |   |           |    |   | (review)   |
|        | xenoestrogenic    | E Coli,       |               |   |           |    |   |            |
|        | compounds,        | Salmonella,   |               |   |           |    |   |            |
|        | pesticides,       | Giardia,      |               |   |           |    |   |            |
|        | VOCs,             | Microplastics |               |   |           |    |   |            |
|        | phthalates,       |               |               |   |           |    |   |            |
|        | faecal bacteria   |               |               |   |           |    |   |            |
| 69     | Pharmaceutical    | Triclosan,    | Aquatic biota | Х | LC, GC,   | NT | Х | 69         |
|        | s, personal care  | Diclofenac,   | – fish,       |   | UHPLC,    |    |   | R Alvarez- |
|        | products, illicit | PBDE,         | mussel,       |   | GC-       |    |   | Ruiz e al, |
|        | drugs,            | PCP           | worm plant    |   | MS/MS,    |    |   | 2020       |
|        | emerging          |               |               |   | LC-       |    |   |            |
|        | persistent        |               |               |   | MS/MS.    |    |   |            |
|        | organic           |               |               |   | HRMS:     |    |   |            |
|        | pollutants        |               |               |   | QTOF, Q-  |    |   |            |
|        | (flame            |               |               |   | Orbitrap, |    |   |            |
|        | retardants,       |               |               |   | HPLC-     |    |   |            |
|        | perfluoroalkyl    |               |               |   | DAD, IC-  |    |   |            |
|        | substances,       |               |               |   | MS/MS     |    |   |            |
|        | alkylphenols),    |               |               |   | 34        |    |   |            |
|        | microplastics,    |               |               |   |           |    |   |            |
| 70     | Pharmaceutical    | Diclofenac,   | Water         | X | X         | NT | X | 70         |
|        | s, agricultural   | Atrazine,     | resources:    |   |           |    |   | Iy Lopez,  |
|        | products/         | Cocaine,      | drinking      |   |           |    |   | 2019       |
|        | pesticides,       | Bisphenol A,  | water,        |   |           |    |   |            |
|        | narcotics and     | Triclosan,    | wastewater    |   |           |    |   |            |
|        | illegal drugs,    |               | effluent,     |   |           |    |   |            |
|        | food industry     |               | river/surface |   |           |    |   |            |

|    | additives,<br>personal care<br>products                                                                   |                                                     | water,<br>ocean/sea<br>water,<br>groundwater                                                        |   |                                              |           |   |                             |
|----|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------|---|----------------------------------------------|-----------|---|-----------------------------|
| 71 | Organochlorin<br>pesticides                                                                               | DDT,<br>HCH                                         | Biological,<br>environment<br>al matrices                                                           | X | X                                            | Т         | Х | 71<br>C Olisah<br>2019      |
| 72 | Pharmaceutical<br>s                                                                                       | Sulfamethoxaz<br>ole,<br>Diclofenac,<br>Paracetamol | Aquatic<br>environment:<br>sludge, soil,<br>surface<br>water,<br>sediment,<br>groundwater,<br>biota | X | X                                            | T         | X | 72<br>S Fekadu<br>2019      |
| 73 | Antibiotics                                                                                               | Ciprofloxacin                                       | Surface fresh<br>water:<br>stream, river                                                            | X | X                                            | Т         | X | 73<br>M-C Danner,<br>2019   |
| 74 | Persistent<br>organic<br>pollutants,<br>organophospho<br>rus flame<br>retardants,<br>PBDEs, PCBs,<br>OCPs | BDE 47,<br>CB 52,<br>alpha-HCH                      | Landfill<br>sediment and<br>leachate                                                                | X | T: GC-<br>MS, NT:<br>UPLC-Q-<br>TOF-MS<br>35 | T AND NT  | X | 74<br>S Innocentia,<br>2019 |
| 75 | Antiretroviral                                                                                            | Nevirapine,<br>Lopinavir,<br>Zidovudine             | Surface<br>water                                                                                    | X | UHPLC-<br>MS/MS<br>mv done<br>36             | T<br>(55) | X | 75<br>TP Wood<br>2015       |

| 76                  | Antiviral<br>drugs<br>Plastic                                             | Microplastic                                                                                                                            | Aquatic<br>environemnt,<br>wastewater<br>treatment<br>plants<br>Sediment, | X     | LC-<br>MS/MS,<br>HILI,<br>GCXGC-<br>TOFMS,<br>GC-MS<br>37<br>Microscop                             | Т |   | 76<br>C Nannou,<br>2019<br>77               |
|---------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------|---|---|---------------------------------------------|
| ,,                  | 1 hastic                                                                  | Wieroplaste                                                                                                                             | surface water                                                             | 1     | y, FT-IR                                                                                           | 1 |   | T Naidoo, et<br>al,,2015                    |
| 78<br>SA1<br>Review | Pharmaceutical<br>s: NSAIDs,<br>antibiotics,<br>ARVs, steroid<br>hormones | Naproxen,<br>Sulfamethoxaz<br>ole, N<br>evirapine,<br>17-beta-<br>Estradiol,<br>Metformin,<br>Carbarmazepin<br>eAtenolol,<br>Mefloquine | African<br>water bodies                                                   | Xgrab | HPLC-<br>MS, LC-<br>TOF-MS,<br>LC-diode<br>array/UV,<br>Orbitrap-<br>MS, GC-<br>MS,<br>ELISA<br>38 | Τ | X | 78<br>LM<br>Madikizela,<br>2020<br>(review) |
| 79<br>SA2           | Azole<br>antifungal<br>drugs                                              | Clotrimazole,<br>Fluconazole                                                                                                            | Wastewater,<br>drinking<br>water                                          | X     | UHPLC-<br>MSMS<br>(mv done)<br>39                                                                  | Т | X | 79<br>HA Asress,<br>2020                    |
| 80<br>SA3           | Psychoactive<br>drug residues<br>and<br>metabolites                       | Morphine,<br>Cocaine,<br>Heroin                                                                                                         | Aquatic<br>environment<br>wastewater,<br>lake                             | Х     | UHPLC-<br>Q-TOF-<br>MS<br>(mv done)<br>40                                                          | Т | X | 80<br>DP<br>Masemola ,<br>2019              |
| 81<br>SA4           | Antimicrobials<br>for TB                                                  | Isoniazid,<br>Rifampicin                                                                                                                | Aquatic<br>environment:                                                   | Х     | X                                                                                                  | Т | X | 81                                          |

| Review |                |                | wastewater,   |           |           |   |   | CA Magwira  |
|--------|----------------|----------------|---------------|-----------|-----------|---|---|-------------|
|        |                |                | surface       |           |           |   |   | 2019        |
|        |                |                | water,        |           |           |   |   | (review)    |
|        |                |                | sediment      |           |           |   |   |             |
| 82     | Antiretroviral | Nevirapine,    | Surface       | Grab and  | LC-       | Т | X | 82          |
| SA5    | drugs          | Efavirenz      | water,        | composite | MS/MS     |   |   | TT          |
|        |                |                | w astewater   |           | (mv done) |   |   | Mosekieman  |
|        |                |                |               |           | 41        |   |   | g, 2019     |
| 83     | Antibiotic     | Ciprofloxacin, | Wastewater,   | Х         | LC-       | Т | X | 83          |
| SA6    | residues       | Erythromycin,  | sludge,       |           | MS/MS     |   |   | AC          |
|        |                | Sulfamethoxaz  | sediment,     |           | Mv done   |   |   | Faleye,2019 |
|        |                | ole            | surface water |           | 42        |   |   |             |
| 84     | CECs           | Nevirapine,    | Dam water,    | Х         | LC-MSMS   | Т | X | 84          |
| SA7    | pharmaceutical | Bromacil       | river         |           | Mv done   |   |   | C Rimayi    |
|        | s, pesticide,  |                | sediment,     |           | 43        |   |   | 2018        |
|        | steroid        |                | fish          |           |           |   |   |             |
|        | hormone        |                |               |           |           |   |   |             |
| 85     | Chloro-s-      | Atrazine,      | Lake, river,  | Х         | GC-MS,    | Т | X | 85          |
| SA8    | triazines      | Simazine       | groundwater   |           | LC-MSMS   |   |   | C Rimayi    |
|        |                |                |               |           | Mv done   |   |   | 2018        |
| 86     | Personal care  | Triclosan,     | Wastewater,   | Х         | Modelling | Т | X | 86          |
| SA9    | products:      | Triclocarban   | freshwater,   |           | 44        |   |   | Musee, 2018 |
|        | antimicrobials |                | soil          |           |           |   |   |             |
| 87     | Veterinary     | Tetracycline,  | Surface       | Х         | HPLC-UV   | Т | X | 87          |
| SA10   | pharmaceutical | Estradiol,     | water         |           | Mv done   |   |   | OSF Atoki   |
|        | resiudes       | Diclofenac     |               |           |           |   |   | 2018        |
| 88     | Antiretroviral | Nevirapine,    | wastewater    | √e        | LC-MSMS   | Т | X | 88          |
| SA11   | drugs          | Efavirenz      |               |           | Mv done   |   |   | OA Abafe    |
|        |                |                |               |           | 45        |   |   | 2018        |

| 89<br>\$12           | Microplastic                                                                              | microplastic                                            | Waterbirds:<br>faecal<br>samples,<br>feathers                                                                                                              | X                  | microscop<br>y                                                                                                                        | Т | X | 89<br>C Reynolds,<br>2018 |
|----------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------|---|---|---------------------------|
| 90<br>SA13<br>Review | Rare earth<br>elements                                                                    | La, Gd, Ce                                              | Dust, marine,<br>aquatic<br>systems, tap<br>water,<br>terrestrial<br>and aquatic<br>biota, human<br>food,<br>surface,<br>groundwater,<br>soil,<br>sediment | X                  | x-ray<br>absorption<br>spectrosco<br>py, icp-ms,<br>ICP-OES,<br>HPLC-<br>ICP-MS,<br>HGGC-<br>QFAAS,<br>ZIC-<br>cHILIC-<br>ICPMS<br>46 | Т | X | 90<br>W Gwenzi,<br>2018   |
| 91<br>SA14           | Pharmaceutical<br>s, personal care<br>products,<br>EDCs,<br>metabolites,<br>illicit drugs | Cocaine,<br>Carbamazepine<br>, Naproxen,<br>Diclofenac, | Wastewater,<br>surface water                                                                                                                               | Grab and composite | LC-MSMS<br>47                                                                                                                         | X | X | 91<br>Archer ,<br>2017    |
| 92<br>SA15           | Polybrominate<br>d diphenyl<br>ethers                                                     | Penta-, octa-,<br>deca-BDE                              | Food<br>products,<br>aquatic and<br>terrestrial<br>animals,<br>water, soil,<br>human fluid                                                                 | X                  | X                                                                                                                                     | Τ | X | 92<br>C olisah,<br>2018   |

| 93<br>SA16        | Perfluorinated<br>alkyl acids                                                                         | PFBA, PFOA,<br>PFBS                                   | Plasma of crocodiles                                                                                           | X     | LC-MSMS<br>48                                       | Т         | X | 93<br>I Christe,<br>2016    |
|-------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------|-----------|---|-----------------------------|
| 94<br>SA17        | Perfluoroalkyl<br>acids                                                                               | PFOA, PFDA                                            | Tissue of<br>Tilapia (fish)                                                                                    |       | LC-MS<br>49                                         | Т         | X | 94<br>JT Bangma,<br>2017    |
| 95<br>SA18        | Pharmaceutical<br>s                                                                                   | Caffeine,<br>Lamotrigine,<br>Nevirapine,<br>Valsartan | River, dam<br>water                                                                                            | X     | UHPLC-<br>QTOF-<br>MSMS<br>(HR-MS)<br>Mv done<br>50 | T a dn NT | X | 95<br>TP Wood ,<br>2017     |
| 96<br>SA19<br>rev | Residual<br>antibiotics,<br>antibiotic<br>resistant<br>bacteria,<br>antibiotic<br>resistance<br>genes | Nalidixic acid,<br><i>Tet B, sul3</i>                 | Surface<br>water<br>catchments                                                                                 | X     | X                                                   | T<br>(74) | X | 96<br>AA Adegoke<br>2018    |
| 97<br>SA20        | Anticoagulant<br>poison/rodenti<br>cides                                                              | Brodifacoum,<br>Difethialone                          | Liver and<br>blood from:<br>Predators:<br>caracal, otter,<br>genet, honey<br>badger,<br>mongoose,<br>Eagle owl | Xgrab | LC-<br>MS/MS<br>51                                  | Т         | X | 97<br>LEK Serieys,<br>2019, |
| 98<br>SA21        | Brominated<br>flame<br>retardants                                                                     | EH-TBB,<br>BTBPE                                      | Leachate,<br>sediment                                                                                          | X     | GC-EI-MS<br>52                                      | Т         | X | 98<br>OI Olukunle,<br>2015  |

| 99<br>SA22<br>review | NSAIDs                                                                                               | Ibuprofen,<br>Naproxen,,<br>Ketoprofen                                                                                                                                                                      | Wastewater,<br>surface water                                                | X | X                        | Т | X | 99<br>ML<br>Mlunguza,<br>2019<br>(review) |
|----------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---|--------------------------|---|---|-------------------------------------------|
| 100<br>SA23          | Antimicrobials<br>in personal<br>care products                                                       | Triclosan,<br>Triclocarban                                                                                                                                                                                  | Wastewater,<br>river, sewage<br>sludge                                      | X | LC-MSMS<br>Mv done<br>53 | Т | X | 100<br>RF Lehutso<br>2017                 |
| 101<br>SA24          | Engineered<br>nanomaterials<br>(modelling):<br>car polich,<br>sunscreen,<br>cosmetics,<br>toothpaste | TiO2<br>ZnO<br>SiO2                                                                                                                                                                                         | Wastewater,<br>landfill,<br>freshwater                                      | X | X                        | Т | X | 101<br>N Musee,<br>2017                   |
| 102<br>SA25          | OCPs and<br>PCBs                                                                                     | Organochlorine<br>pesticides<br>HCH,<br>HCB,<br>Heptachlor,<br>Aldrin,<br>DDT and its<br>metabolites<br>(o,p'-DDD,<br>o,p'-DDD,<br>o,p'-DDE and<br>p,p'-DDE),<br>Dieldrin,<br>Endrin,<br>Mirex and<br>PCBs. | water,<br>sediment,<br>pore water,<br>surface<br>sediment and<br>bank soil, |   |                          |   |   | 102<br>E Gakuba,<br>PhD Thesis            |
|               |                                                                     | The PCB<br>congeners<br>investigated<br>were: PCB-<br>28, 52, 77, 101,<br>105, 138, 153,<br>180 |                                                                                                                                  |                    |                         |   |   |                                      |
|---------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|---|---|--------------------------------------|
| 103           | Pathogens and<br>pharmaceutical<br>s, antibiotic<br>resistance gene | Rotavirus,<br>Sulfamethoxaz<br>ole                                                              | Source-<br>separated<br>urine                                                                                                    | Grab and composite | PCR, LC-<br>MS/MS<br>54 | Т | X | 103<br>HN Bischel,<br>2015           |
| 104<br>Review | Geogenic<br>contaminants –<br>metals, rare<br>earth elements        | Asbestos,<br>Nickel,<br>Iron                                                                    | Serpentinitic<br>ultramafic<br>geological<br>environment<br>s: soil<br>systems,<br>aquatic<br>systems,<br>atmospheric<br>systems | X                  | X                       | Τ | X | 104<br>W Gwenzi.<br>2020<br>(review) |
| 105           | NSAID:<br>Diclofenac                                                | Diclofenac                                                                                      | Environment<br>al<br>compartment<br>: water soil,<br>sediment,<br>and biota                                                      | X                  | X                       | Τ | X | 105<br>P<br>Satishkumar,<br>2020     |
| 106           | antibiotics                                                         | Penicillin,<br>Tetracycline                                                                     | wastewater                                                                                                                       | Х                  | LC-MS<br>55             | Т | Х | 106                                  |

|               |                                                                         |                                                         |                                                                                                       |   |                                      |    |   | S Al-<br>Maadheed,<br>2019                          |
|---------------|-------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---|--------------------------------------|----|---|-----------------------------------------------------|
| 107<br>Review | POPs: PCB,<br>PBDE, OCP,<br>PCN, PFAS                                   | PBDE 209,<br>DDT                                        | Environment<br>: Air, water,<br>soil,<br>sediment,<br>food, aquatic<br>organisms,<br>humans           | X | Supplemen<br>tary<br>informatio<br>n | Т  | X | 107<br>P bruce-<br>vanderpuije,<br>2018<br>(review) |
| 108 Review    | Microplastic                                                            | Microplastic                                            | Aquatic food<br>web –<br>freshwater<br>and marine<br>environment                                      | X | X                                    | Т  | X | 108<br>W Wang,<br>2019<br>(review)                  |
| 109           | microplastics                                                           | Microplastics                                           | Marine<br>environment                                                                                 | X | X                                    | Т  | Х | 109<br>CG Alimba,<br>2019                           |
| 110           | Selective<br>serotonin<br>reuptake<br>inhibitors                        | Fluoxetine,<br>Sertraline                               | Aquatic<br>systems:<br>wastewater,<br>freshwater,<br>saltwater,<br>drinking<br>water,<br>ground water | X | X                                    | Т  | X | 110<br>RA Mole,<br>2019                             |
| 111           | Contaminants:<br>Pesticide,<br>insecticide,<br>herbicide,<br>fungicide, | Atrazine,<br>Diazinon,<br>Naproxen,<br>Lead,<br>Mercury | Amphibians<br>in water                                                                                | X | X                                    | NT | X | 111<br>M Sievers,<br>2019                           |

|     | metals,<br>pharmaceutical<br>s, salinity                                                                             |                                                                             |                                       |   |                                                                     |          |   |                            |
|-----|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------|---|---------------------------------------------------------------------|----------|---|----------------------------|
| 112 | Pharamaceutic<br>als, industrial<br>chemicals,<br>personal care<br>producst,<br>pesticides,<br>illicit<br>substances | Benzotriazole,<br>DEET,<br>Amisulpride                                      | sediment                              | X | UPLC-<br>QTOF-<br>MSMS<br>56                                        | T and NT | X | 112<br>G Mascolo,<br>2019  |
| 113 | Organic<br>contaminants                                                                                              | Benzotriazole,<br>Diclofenac,<br>DEET,<br>Butylparaben                      | Surficial sediment                    | X | UPLC-<br>QTOF-<br>MS-MS<br>57                                       | T and NT | X | K Noguera-<br>Oviedo, 2016 |
| 114 | Chlorine<br>tolerance –<br>microbial<br>pathogens                                                                    | Enterococcus                                                                | Wastewater                            | X | PCR,<br>agarose<br>gel<br>electropho<br>resis,<br>BLAST<br>analysis | T        | X | 114 M<br>Owoseni,<br>2017  |
| 115 | Groundwater<br>contaminants:<br>fertilizer,<br>pharmaceutical<br>, pesticide,                                        | Nitrate,<br>BTEX,<br>atrazine, iron,<br>Lead,<br>Nevirapine,<br>Paracetamol | groundwater                           | X | X                                                                   | T and NT | X | 115<br>NM Burri,<br>2019   |
| 116 | Pharmaceutical<br>s, hormones,<br>pesticides,                                                                        | DEEt,<br>Cocaine,<br>Atenolol                                               | Surface<br>waters/coasta<br>l lagoon: | Х | NanoLC-<br>HRMS<br>58                                               | Т        | X | 116<br>L Griffero,<br>2019 |

|     | drugs of abuse,<br>lifestyle<br>products                                                                                 |                                                                | stream,<br>lagoon, sea                                                              |   |                               |            |   |                             |
|-----|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------|---|-------------------------------|------------|---|-----------------------------|
| 117 | NSAIDs,<br>parabens,<br>natural and<br>synthetic<br>hormones,                                                            | Bisphenol A,<br>Triclosan,<br>Methyl<br>paraben,<br>Ketoprofen | Drinking<br>water, well,<br>river                                                   | X | GC-MS<br>59                   | T<br>(90)  | X | 117<br>D Arismendi,<br>2019 |
| 118 | Solvent<br>stabilizer, food<br>additive                                                                                  | 1,4 -Dioxane                                                   | Groundwater<br>, air, soil                                                          | Х | GC-MS<br>60                   | Т          | X | 118<br>KJG Pollitt,<br>2019 |
| 119 | Emerging<br>contaminants,<br>antibiotic<br>resistance<br>genes                                                           | Bisphenol-A,<br>Triclosan,<br>Tetracycline,<br>Ampicillin      | Drinking<br>water, waste<br>water,<br>surface<br>water,<br>sediment,<br>soil, biota | X | X                             | T and NT   | X | 119<br>G Reichert,<br>2019  |
| 120 | PCP, PAH,<br>PFAS                                                                                                        | Methyl<br>paraben,<br>Naphthalene,<br>PFBS                     | Water,<br>sediment,<br>mussel                                                       | X | GC-MS,<br>UPLC-<br>HRMS<br>61 | Т          | X | 120<br>Y Aminot,<br>2019    |
| 121 | Personal care<br>products,<br>pharmaceutical<br>s, plasticisers,<br>pesticides,<br>surfactants,<br>resistant<br>bacteria | Naproxen,<br>Picloram                                          | Groundwater<br>, surface<br>water, waste<br>water                                   | X | X                             | NT<br>(10) | X | 121<br>M Taheran,<br>2018   |

| 122 |                                                                                                     | Sulfamethoxaz<br>ole,<br>DEET,<br>Triclosan     | Algal ponds                  | X | X                             | NT | X            | 122<br>ZN Norvill,<br>2016 |
|-----|-----------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------|---|-------------------------------|----|--------------|----------------------------|
| 123 | Pharmaceutical<br>s                                                                                 | Codeine,<br>Diclofenac,<br>Sulfamethoxaz<br>ole | Surface<br>water             | Х | LC-HRMS<br>62                 | Т  | X            | 123<br>P Branchet,<br>2018 |
|     | sentinel                                                                                            |                                                 |                              |   |                               |    |              |                            |
| 124 | Polybrominate<br>d diphenyl<br>ethers                                                               | PBDE-17, 47,<br>100, 99, 154,<br>153, 183, 209  | Eggshells of bird s          | X | GC-MS<br>63                   | Т  | X            | AP Daso,<br>2015           |
| 125 | Organochlorin<br>e pesticides,<br>brominated<br>flame<br>retardants,<br>perfluorinated<br>compounds | HCB,<br>PCB-52,<br>BDE-99,<br>PFOS              | Penguin eggs                 | X | GC-ECD,<br>LC-<br>MS/MS<br>64 | Т  | X            | H Bouwman,<br>2015         |
| 126 | Perfluoroalkyl<br>substances                                                                        | PFDA, PFOA,<br>PFOS                             | Edible fish                  | Х | LC-MSMS<br>65                 | Т  | Х            | PA Fair,<br>2019           |
| 127 | Polychlorinate<br>d biphenyls                                                                       | PCB,<br>PBDE,PFAS                               | Bird feathers                | Х | X                             | NT | X            | VLB jaspers, 2017          |
| 128 | Mycotoxins                                                                                          | Aflatoxin B1,<br>Ochratoxin A                   | Pearl millet                 | Х | LC-MSMS<br>66                 | Т  | $\checkmark$ | H Houissa,<br>2019         |
| 129 | Polybrominate<br>d diphenyl<br>ethers                                                               | PBDE-28,<br>PBDE-100,<br>PBDE-47                | Chicken<br>eggs, cow<br>milk | X | GC-ECD                        | Т  | Х            | K<br>Oloruntoba,<br>2019   |

| 130 | Persistent    | CB153,,       | Tissue- polar | X         | LR-           | Т     | Х   | RJ Letcher, |
|-----|---------------|---------------|---------------|-----------|---------------|-------|-----|-------------|
|     | organic       | Dieldrin,     | bears         |           | GCMS,         |       |     | 2018        |
|     | pollutants    | BDE47,        |               |           | HR-           |       |     |             |
|     |               | PFOA          |               |           | GCMSMS        |       |     |             |
|     |               |               |               |           | , HRGC-       |       |     |             |
|     |               |               |               |           | HRMSUP        |       |     |             |
|     |               |               |               |           | LC-MSMS       |       |     |             |
|     |               |               |               |           | 67            |       |     |             |
| 131 | Organochlorin | Heptachlor,   | Water,        | X         | GC-ECD        | Т     | Х   | А           |
|     | e residues    | Aldrin,       | sediment,     |           |               | (100) |     | Chukwuka,   |
|     |               | Dieldrin      | fish          |           |               |       |     | 2019        |
| 132 | Halogenated   | BC-10, BC-3,  | Chokka        | X         | GC-           | Т     | X   | Q Wu, 2019  |
|     | natural       | PCB 138       | squid         |           | ECNIMS        |       |     |             |
|     | products,     |               |               |           | 68            |       |     |             |
|     | POPS,         |               |               |           |               |       |     |             |
| 133 | Metallic      | U, Hg, Pb     | Turtle eggs   | X         | ICP-MS        | Т     | Х   | M du Preez, |
|     | elements      |               | ~             |           | 69            |       |     | 2018        |
| 134 | Metallic      | Hg, Pb, Cr    | Crocodile     | X         | ? to check    | Т     | YES | M du Preez, |
|     | elements      |               | eggs          |           | Icp?          |       |     | 2018        |
| 135 | Trace metals, | Hg, C, N, CB- | Tuna          | X         | AA, ICP-      | Т     | Х   | T Chouvelo, |
|     | POPs, stable  | 28            |               |           | MS,           |       |     | 2017        |
|     | isotope       |               |               |           | isotope       |       |     |             |
|     | analysis      |               |               |           | ratio MS      |       |     |             |
| 126 |               |               | C 1'1         | <u> </u>  | 70            | T     | V   |             |
| 136 | EDCs          | Atrazine,     | Crocodile     | Grab,     | GC-MS,        | Т     | Х   | A Arukwe,   |
|     |               | BPA,          | tissue, water | composite | AA, GC-       |       |     | 2016        |
|     |               | EE2           |               |           | FID, GC-      |       |     |             |
|     |               |               |               |           | ECD,<br>HPLC- |       |     |             |
|     |               |               |               |           | DAD,          |       |     |             |
|     |               |               |               |           |               |       |     |             |
|     |               |               |               |           | qPCR,         |       |     |             |

|     |                                                                                                                              |                                                                  |                                                |   | enzyme<br>immunoas<br>say<br>71           |   |   |                                                  |
|-----|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------|---|-------------------------------------------|---|---|--------------------------------------------------|
| 137 | Pharmaceutical<br>s,<br>perfluorintaed<br>compounds,<br>anthropgenic<br>waste<br>indicators,<br>inorganics,<br>microorganism | Sulfamethoxaz<br>ole,<br>PFOA,<br>Triclosan,<br>Lead,<br>Giardia | Source and<br>treated<br>drinking<br>water     | ? | ?                                         | Τ | ? | Dr Suzanne<br>van Drunick,<br>y <mark>ear</mark> |
| 138 | Household<br>antimicrobials                                                                                                  | Triclosan                                                        | wastewater                                     | X | GC-FID,<br>GC-MS<br>72                    | Т | X | T Letseka,<br>2017                               |
| 139 | Oestrogen<br>hormones                                                                                                        | E1, E2, EE2                                                      | Surface,<br>drinking                           | X | UFLC-<br>QTRAP-<br>MSMS<br>73             | Т | X | SB Mnguni,<br>2018                               |
| 140 | Organochlorin<br>e pesticides                                                                                                | Dieldrin,<br>Aldrin,<br>Endrin                                   | Sediment<br>pore water,<br>surface<br>sediment | X | GC-MS<br>74                               | Т | X | E Gakuba,<br>2017                                |
| 141 | Polychlorinate<br>d biphenyls                                                                                                | PCB5,<br>PCB138,<br>PCB206                                       | River water                                    | X | GC-ECD                                    | Т | X | Yahaya,<br>2018                                  |
| 142 | Natural<br>organic matter                                                                                                    |                                                                  | Water                                          | X | Direct,<br>spectromet<br>ric (Uv-<br>VIS, | Т | X | N Chaukura,<br>2018                              |

|     |                                                                                             |                                                                                           |                                   |       | fluorescen<br>ce<br>excitation-<br>emission<br>matrix),<br>Fractionati<br>on (SEC,<br>LC-OCD) |    |   |                        |
|-----|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------|-------|-----------------------------------------------------------------------------------------------|----|---|------------------------|
| 143 | Carbapenem<br>(beta lactam<br>antibiotics)-<br>resistant<br>bacteria                        | CRB37,<br>CRB42                                                                           | River water,<br>river<br>sediment | Xgrab | Culture<br>methods                                                                            | Т  | X | Hrenovic,<br>2019      |
| 144 | Microplastic                                                                                | Microfibre                                                                                | River<br>sediment                 | X     | stereomicr<br>oscope                                                                          | Т  | Х | S de Villiers,<br>2018 |
| 145 | Organophosph<br>orus flame<br>retardants                                                    | Tris-<br>(Chloropropyl)-<br>phosphate,<br>tris-(2,3-<br>Dibromo-<br>propyl)-<br>phosphate | Surface<br>water                  | X     | GC-MS<br>75                                                                                   | T  | X | TB Chokwe,<br>2019     |
| 146 | Metals,<br>organics,<br>pesticides, blu-<br>green algae,<br>pharmaceutical<br>s, toiletries | X                                                                                         | Non-<br>perrenial<br>river water  | X     | X                                                                                             | NT | X | JA Day, et<br>al, 2019 |
| 147 | Organochlorin<br>e pesticides,                                                              | Dieldrin,<br>Endrin,<br>HCB,                                                              | River bank<br>soil                | Х     | GC-MS<br>76                                                                                   | Т  | Х | E Gakuba,<br>2019      |

|     | polychlorinate<br>d biphenyls                                                                                  | HCH,<br>PCB105,<br>PCB180                                                                                                     |                    |   |                                                                                                                                                                                                                                                      |   |   |                       |
|-----|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-----------------------|
| 148 | δ-endotoxins                                                                                                   | Cry1Ab protein                                                                                                                | Borehole<br>water  | X | ELISA                                                                                                                                                                                                                                                | Т | X | A du Pisanie,<br>2019 |
| 149 | Agricultural pesticides                                                                                        | Carbofuran,<br>Atrazine,<br>Thiabendazole                                                                                     | River<br>Tap water | X | GC-MS<br>77                                                                                                                                                                                                                                          | Т | X | M Machete,<br>2019    |
| 150 | Pesticides<br>/Endocrine<br>disruptors -<br>insecticides,<br>fungicides,<br>herbicides,<br>steroid<br>hormones | Azinphosmethy<br>l,<br>Endosulfan,<br>Carbaryl,<br>Chlorpyrifos<br>Midstream,<br>Basta,<br>Arsenal,<br>Roundup,<br>EE2,<br>E2 | Dam water          | X | ELISA;<br>Yeast<br>Oestrogen<br>Screen<br>(YES),<br>Yeast<br>Anti-<br>oestrogen<br>Screen<br>(anti-<br>YES),<br>Yeast<br>Androgen<br>Screen<br>(YAS) and<br>Yeast<br>Anti-<br>androgen<br>Screen<br>(anti-YAS)<br>recombina<br>nt yeast<br>bioassays | Т | X | JH van Wyk,<br>2014   |

| 151 | Agricultural<br>chemicals -<br>pesticides,<br>herbicides and<br>plant growth<br>regulants;<br>INORGANICS                     | Diphenylamine,<br>Imizalil,<br>Thiabendazole,<br>Imidacloprid<br>and<br>Propiconazole,<br>Atrazine,<br>Alachlor,<br>Fluoride,<br>Lead,<br>Mercury,<br>pH, | Water,<br>sediment, air,<br>poultry |   | LC-<br>MSMS,<br>GC-NPD,<br>DSA-<br>TOF-MS,<br>ICP-MS<br>78      | Т | X | JM<br>Dabrowski,<br>2015 |
|-----|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---|-----------------------------------------------------------------|---|---|--------------------------|
| 152 | Organic<br>chemicals-<br>Polycyclic<br>aromatic<br>hydrocarbons,<br>DDX,<br>polychlorinate<br>d biphenyls;<br>certain metals | DDT,<br>cis-Chlordane,<br>PCB18,<br>PCB209,<br>Phenanthrene,<br>Pyrene,<br>Iron,<br>Lead                                                                  | Sediment,<br>fish                   | X | GC-ion<br>trap MS,<br>USEPA<br>3035B for<br>metals<br>79        | Т | X | Brent<br>Newman,<br>2015 |
| 153 | EDC                                                                                                                          | 17-beta-<br>Estradiol                                                                                                                                     | Wastewater                          | X | Estrogen<br>nano-<br>biosensor,<br>HPLC-<br>UV, GC-<br>MS<br>80 | Т | X | EI Iwuoha,<br>2015       |
| 154 | Microbial<br>communities                                                                                                     | Cyanobacteria<br>Synechococcus,<br>Bacteroidetes,                                                                                                         | Water,<br>sediment                  | Х | Next<br>Generation                                              | Т | X | GF Matcher,<br>2015      |

| 155 | Cyanobacteria-<br>BMAA      | Gammaproteob<br>acteria,<br>Betaproteobact<br>eria<br>β-N-<br>Methylamino-<br>L-alanine | Cultures           | Na | Sequencin<br>g NGS<br>LC-MS,<br>UPLC-<br>MS/MS<br>81                                                                                                                                                                                                    | Т | X | TG<br>Downing,<br>2014 |
|-----|-----------------------------|-----------------------------------------------------------------------------------------|--------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|------------------------|
| 156 | Engineered<br>nanomaterials | Titanium<br>nanoparticles:<br>nTiO <sub>2</sub>                                         | Aquatic<br>systems | X  | Material<br>Flow<br>Analysis<br>modelling<br>with RQ<br>values as<br>output;<br>Particle<br>flow<br>analysis<br>models;<br>Stochastic<br>models;<br>Dose<br>response<br>modles;<br>quantitativ<br>e<br>structure-<br>activity<br>relationshi<br>p model | T | X | N Musee et<br>al, 2015 |

| 157 | Brominated<br>flame<br>retardants                                                                                                                                                 | BDE-17,<br>BDE-47,<br>BDE-153                                                                                                                                                                                                                                                                                                                                                          | landfills,<br>surface<br>water,<br>wetlands,<br>groundwater,<br>sediment and<br>biota | X | Not sure<br>Pdf<br>damaged | T | X | OJ Okonkwo<br>et al, 2015 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---|----------------------------|---|---|---------------------------|
| 158 | selected<br>polychlorinate<br>d biphenyl<br>(PCB)<br>congeners,<br>organochlorine<br>pesticides<br>(OCPs), and<br>pharmaceutical<br>s and<br>personal care<br>products<br>(PPCPs) | OCPs such as<br>HCB, HCH<br>(lindane),<br>Aldrin,<br>Heptachlor,<br>Dieldrin,<br>Endrin,<br>Mirex and<br>DDT with its<br>metabolites<br><i>o,p-</i> DDE, <i>p,p-</i><br>DDE, <i>o,p-</i><br>DDD, <i>p,p-</i><br>DDD, <i>o,p-</i> DDT<br>and <i>p,p-</i> DDT<br>and <i>8</i> PCB<br>congeners,<br>PCB 28, PCB<br>52, PCB 77,<br>PCB 101, PCB<br>105, PCB 138,<br>PCB 153 and<br>PCB 180 | River water,<br>sediment,<br>wastewater,<br>soil                                      | X | LC-MS,<br>GC-MS<br>82      | Τ | X | Moodley et<br>al, 2016    |

| 159 | EDC activity               | EDC activity:<br>thyroid activity | Water<br>(surface, | X          | thyroid<br>and      | Т |            | NH Aneck-<br>Hahn, et al, |
|-----|----------------------------|-----------------------------------|--------------------|------------|---------------------|---|------------|---------------------------|
|     |                            |                                   | drinking and       |            | androgenic          |   |            | 2017                      |
|     |                            |                                   | treated            |            | bioassays           |   |            |                           |
|     |                            |                                   | sewage             |            | for the             |   |            |                           |
|     |                            |                                   |                    |            | detection<br>of EDC |   |            |                           |
|     |                            |                                   |                    |            | activity in         |   |            |                           |
|     |                            |                                   |                    |            | water               |   |            |                           |
|     |                            |                                   |                    |            | samples:            |   |            |                           |
|     |                            |                                   |                    |            | 1                   |   |            |                           |
|     |                            |                                   |                    |            | GH3.TRE.            |   |            |                           |
|     |                            |                                   |                    |            | Luc                 |   |            |                           |
|     |                            |                                   |                    |            | thyroid             |   |            |                           |
|     |                            |                                   |                    |            | bioassay;           |   |            |                           |
|     |                            |                                   |                    |            | HR-MS<br>83         |   |            |                           |
| 160 | PAHs (as a                 | Atrazine,                         | Millipore          |            | Quantum-            | Т | Xx         | O. Adegoke,               |
|     | compound                   | Acetaminophen                     | -                  |            | dot based           |   |            | 2017                      |
|     | class), atrazine           | Triclosan                         |                    |            | Fluorescen          |   |            |                           |
|     | (a pesticide),             |                                   |                    |            | ce sensors          |   |            |                           |
|     | acetaminophen              |                                   |                    |            |                     |   |            |                           |
|     | (a                         |                                   |                    |            |                     |   |            |                           |
|     | pharmaceutical             |                                   |                    |            |                     |   |            |                           |
|     | ), and triclosan           |                                   |                    |            |                     |   |            |                           |
|     | (a personal                |                                   |                    |            |                     |   |            |                           |
| 161 | care product).<br>Toxicity | Aquatic                           | Effluent,          | X          | Integrated          | Т | X          | NJ Griffin et             |
| 101 | tetsing                    | toxicity testing                  | resource           | 2 <b>X</b> | Water Use           |   | 2 <b>x</b> | al, 2019                  |
|     |                            | tomenty testing                   | upstream and       |            | Authorisati         |   |            | ai, 2017                  |
|     |                            |                                   | downstream         |            | on                  |   |            |                           |

| 162 | EDCs: PFCs,                        | Oestrogens:                                  | from sites in<br>following<br>sectors:<br>municipal,<br>agriculture,<br>industrial,<br>mining<br>wastewater |   | Bioassay<br>(IWUAB)<br>Toolkit:<br>Vibrio<br>fischeri<br>bioluminesce<br>nt test: EN<br>ISO 11348-3<br>(2007);<br>Selenastrum<br>capricornutu<br>m growth<br>inhibition<br>test: OECD<br>Guideline<br>201 (2006);<br>Daphnia<br>pulex acute<br>toxicity test:<br>US EPA<br>(2002);<br>Poecilia<br>reticulata<br>acute toxicity<br>test: US EPA<br>(1996)<br>GC×GC- | T | X | MAA              |
|-----|------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|------------------|
| 102 | oestrogens,<br>pharmaceutical<br>s | Estrone (E1),<br>17β-estradiol<br>(E2), 17α- | wastewater                                                                                                  | v | TOFMS;<br>LC/MS/M<br>S analysis.<br>84                                                                                                                                                                                                                                                                                                                             | 1 | Δ | Coetzee,<br>2018 |

| Ethinylestradiol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (EE2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Perfluorinated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| chemicals:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Perfluorobutan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| oic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (PFBA),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Perfluorodecan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| oic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (PFDA),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Perfluorooctan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| oic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (PFOA),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Perfluorohexan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| oic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (PFHxA),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Perfluoro-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| octanesulfonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (PFOS),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Perfluoro-n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| pentanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (PFPeA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Perfluoro-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| hexanesulfonat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| e (PFHxS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Pharmaceutical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| s: Nalidixic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| acid,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bezafibrate,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| octanesulfonate       (PFOS),         Perfluoro-n-       pentanoic acid         (PFPeA)       Perfluoro-1-         hexanesulfonat       e         e       (PFHxS)         Pharmaceutical       s: Nalidixic         acid,       Image: State of the state |

|                                                                                                                                                                                                                                                                                                                                                        | ,<br>Carbamazepine<br>, Stavudine and<br>Lamivudine.                                                                                                                                                                                                                                      |                                                                                      |   |                                                                                                                                                                                                                                                                                                                                               |    |   |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|------------------------|
| 163 Emerging and<br>persistent<br>contaminants,<br>pathogens:<br>14<br>pharmaceutical<br>groups, which<br>included<br>hormones,<br>antibiotics,<br>anti-<br>inflammatories<br>,<br>anticonvulsant<br>s,<br>cardiovascular<br>agents,<br>analgesics,<br>anthelmintics,<br>consumer<br>product<br>additives,<br>bronchodilator<br>s, NSAIDS and<br>ARVs, | Estradiol,<br>Estrone,<br>Estriol<br>diethylstilbestr<br>ol<br>Paracetamol,<br>Ibuprofen,<br>Caffeine and<br>Sulphamethoxa<br>zole<br>NSAIDs<br>(Ketoprofen,<br>Naproxen and<br>Diclofenac) ;<br>ARVs<br>(Ritonavir and<br>Efavirenz) ;<br><i>Proteobacteria</i><br>and <i>Firmicutes</i> | Influent/efflu<br>ent<br>wastewater,<br>river water<br>(upstream,<br>down<br>stream) | X | Orbitrap<br>liquid<br>chromatog<br>raphy<br>high-<br>resolution<br>time of<br>flight mass<br>spectromet<br>ry (LC-<br>HRT-MS)<br>and gas<br>chromatog<br>raphy x<br>gas<br>chromatog<br>raphy x<br>gas<br>chromatog<br>raphy kigh-<br>resolution<br>time of<br>flight mass<br>spectromet<br>ry<br>(GCxGC-<br>HRT-MS);<br>deoxyribo<br>nucleic | NT | X | V Mhuka et<br>al, 2020 |

| antibiotics and     Trimethoprim;     test);       ermB and ermF     Gram       Antibiotic     staining,       resistance     PCR,       genes:responsib     Antibiotic       le for resistance     susceptibil | 164 | Antibiotic<br>resistant<br>bacteria and<br>genes | <i>ermB</i> and <i>ermF</i><br>Antibiotic<br>resistance<br>genes:responsib | Raw source<br>water;<br>Drinking<br>water | X | Gram<br>staining,<br>PCR,<br>Antibiotic | T<br>(130) | X | CC<br>Bezuidenhou<br>t, 2019 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------|---|-----------------------------------------|------------|---|------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------|---|-----------------------------------------|------------|---|------------------------------|

|     |                                    | to a range of<br>antibiotics.<br><i>IntI1</i> and <i>ampC</i><br>were                                 |                                                      |   | ity test,<br>Whole-<br>genome<br>sequencing<br>,<br>Microbiom<br>e analysis<br>86                                                                                                |   |   |                      |
|-----|------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----------------------|
| 165 | Emerging<br>chemical<br>pollutants | Acetaminophen<br>,<br>Triclosan,<br>Atrazine and<br>Polycyclic<br>aromatic<br>hydrocarbons<br>(PAHs). | Tap water<br>River water                             | X | fluorescence<br>sensors<br>(using<br>quantum dot<br>nanomaterial<br>s)                                                                                                           | Т | X | H Montaseri,<br>2019 |
| 166 | Toxicity         testing           | -                                                                                                     | agricultural<br>run-off and<br>acid mine<br>drainage | X | A<br>modified<br>version of<br>the<br><i>Daphnia</i><br>method<br>described<br>in USEPA<br>(2002) and<br>Truter<br>(1994),<br>and<br>incorporat<br>ed aspects<br>of <i>Hydra</i> | Τ | X | P Singh,<br>2017     |

|     |                                               |                                      |                                                                    |                                        | toxicity<br>testing                                                                        |   |   |                             |
|-----|-----------------------------------------------|--------------------------------------|--------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------|---|---|-----------------------------|
| 167 | PCB in fish                                   | PCB28,<br>PCB52,<br>PCB101           | Fish                                                               | BOUGHT                                 | GC-MS<br>SW-846<br>Method<br>8082<br>87                                                    | Т | X | B Kampire,<br>2016          |
| 168 | Cyanobacteria                                 | Anabaena,<br>Microcystis             | Dam water                                                          | Х                                      | Microscop<br>e method                                                                      | Т | X | A Chinyama<br>et al, , 2016 |
| 169 | Cyanobacteria<br>and<br>microcystin<br>toxins | O. limnetica                         | River,<br>drinking<br>water                                        | X                                      | Microscop<br>y<br>ELISA                                                                    | Т | X | ZA<br>Mohamed,<br>2016      |
| 170 | Trace elements                                | As, Cu, Pb                           | Surface<br>water (dam),<br>sediment and<br>fish – tissue,<br>blood | X                                      | ICP-OES,<br>ICP-MS<br>88                                                                   | Т | X | Lynch et al,,<br>2016       |
| 171 | Metals                                        | Fe, Pb, Cu                           | Intertidal<br>water,<br>surface<br>sediment                        | X                                      | ICP-MS<br>89                                                                               | Т | X | Sparks et al,<br>2016       |
| 172 | Carbapenem-<br>resistant<br>bacteria          | Carbapenem-<br>resistant<br>bacteria | Wastewater<br>influent,<br>effluent                                | 24 h flow-<br>proportiona<br>l samples | ATB<br>32GN and<br>Vitek 2<br>systems<br>(BioMerie<br>ux);<br>matrix-<br>assisted<br>laser | Т | X | J Hrenovick<br>et al, 2017  |

|     |                                   |                                          |                                                  |       | desorption<br>ionization-<br>time of<br>flight mass<br>spectromet<br>ry<br>MALDI-<br>TOF MS<br>90  |   |   |                                 |
|-----|-----------------------------------|------------------------------------------|--------------------------------------------------|-------|----------------------------------------------------------------------------------------------------|---|---|---------------------------------|
| 173 | Poly-<br>chlorinated<br>biphenyls | PCB28, 101,<br>180                       | Fresh water,<br>particulate<br>phase,<br>mussels | X     | GC-MS<br>91                                                                                        | Т | X | Kampire et<br>al, 2016          |
| 174 | Metals and<br>toxicity            | Al, As, Fe                               | Sediment<br>from river<br>water                  | X     | Bioassay:<br>Phytotoxki<br>t,<br>Ostracodto<br>xkit F and<br>the<br>Diptera<br>bioassay;<br>ICP-OE | Т | X | P Singh et al,<br>2017          |
| 175 | NSAIDs                            | Naproxen,<br>Ibuprofen and<br>Diclofenac | wastewater                                       | Xgrab | HPLC-<br>PDA                                                                                       | Т | X | LM<br>Madikizela<br>et al, 2017 |
| 176 | Fluoride                          | Fluoride                                 | Drinking<br>water                                | -     | -                                                                                                  | Т | Х | H Wanke,<br>2017                |
| 177 | Review:<br>Nonyl=                 | NP, OP, NPE1,<br>NPPE, OPPE              | Environment<br>: air,<br>wastewater,             |       | HPLC-<br>GC-MS                                                                                     | Т | X | TB Chokwe<br>et al, 2017        |

|     | phenol           |               | surface        |   | GC-FID, |    |   |             |
|-----|------------------|---------------|----------------|---|---------|----|---|-------------|
|     | ethoxylates      |               | water,s        |   | GC-     |    |   |             |
|     |                  |               | ediment,       |   | MS/MS   |    |   |             |
|     |                  |               | biota, sludge  |   | 92      |    |   |             |
| 178 | Pharmaceutical   | Diclofenac,   | Surface        | Х | X       | Т  | X | E Archer et |
|     | s and personal   | Triclosan,    | waters         |   |         |    |   | al, 2017    |
|     | care products    | Oestradiol    |                |   |         |    |   |             |
| 179 | BTEX             | Benzene,      | Surface        | Х | X       | Т  | X | OM          |
|     | compounds in     | Toluene,      | water,         |   |         |    |   | Fayemiwo et |
|     | water (review)   | Ethylbenzene, | ground         |   |         |    |   | al, 2017    |
|     |                  | and Xylene)   | water,         |   |         |    |   |             |
|     |                  |               | drinking       |   |         |    |   |             |
|     |                  |               | water,         |   |         |    |   |             |
|     |                  |               | contaminated   |   |         |    |   |             |
|     |                  |               | ground water   |   |         |    |   |             |
| 180 | Organo=          | Heptachlor,   | water,         | Х | GC-MS   | Т  | X | E Gakuba et |
|     | chlorine         | Aldrin,       | sediment       |   | 93      |    |   | al, 2018    |
|     | pesticides       | Endrin        | pore water     |   |         |    |   |             |
|     |                  |               | and surface    |   |         |    |   |             |
|     |                  |               | sediment       |   |         |    |   |             |
| 181 | Poly=            | Naphthalene,  | Wastewater,    | Х | GC-TOF- | Т  | X | S Ncube et  |
|     | aromatic         | Fluorine,     | wastewater     |   | MS      |    |   | al, 2017    |
|     | hydrocarbons     | Pyrene        | sludge         |   | 94      |    |   |             |
| 182 | Toxic            | Cd, Fe, Pb    | Sediment,      | Х | ICP-MS  | Т  | X | AA ambushe  |
|     | elements/        |               | water          |   | 95      |    |   | et al, 2019 |
|     | metals           |               |                |   |         |    |   |             |
| 183 | Emerging         | Atrazine,     | Reclaimed      | Х | GC-MS,  | NT | X | L Petrik,   |
|     | substances of    | Diclofenac,   | Water for      |   | HPLC,   |    |   | 2019        |
|     | concern –        | PFDA          | potable        |   | LC-MS   |    |   |             |
|     | pharmaceutical   |               | reuse- treated |   | 96      |    |   |             |
|     | s, personal care |               | wastewater,    |   |         |    |   |             |

|     | products, EDC,<br>nanomaterials,<br>pesticides,<br>perfluorinated<br>compounds                                                  |                                    | marine<br>outfalls, sea<br>water,<br>marine<br>sediment,<br>beach sand,<br>biota,<br>seawed                                                                      |   |                                                                                                             |    |   |                           |
|-----|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------|----|---|---------------------------|
| 184 | Chemicals of<br>emerging<br>concern -<br>Pharmaceutical<br>s, surfactants,<br>personal care<br>products,<br>flame<br>retardants | Triclosan,<br>NP,<br>PFOA,<br>PBDE | Groundwater<br>, surface<br>water,<br>municipal<br>wastewater,<br>landfill<br>leachate,<br>drinking<br>water, food<br>sources,<br>sediment,<br>wetland<br>plants | X | GC-TOF-<br>MS, GC-<br>MS, LC-<br>MSMS<br>97                                                                 | NT | X | OJ<br>Okonkwo,<br>2019    |
| 185 | Engineered<br>nano=<br>particles                                                                                                | ZnO,<br>Ag                         | wastewater                                                                                                                                                       | X | transmissi<br>on electron<br>microscop<br>e<br>(HRTEM,<br>JEOL-<br>JEM 2100)<br>and<br>scanning<br>electron | Т  | X | EFC Chauke<br>et al, 2016 |

|     |                                                                               |                                                                                                                                                                                                                                                    |                                                        |   | microscop<br>y, FTIR,<br>X-ray<br>diffraction,<br>ICP-OES                                                                                                                                                                                      |            |   |                              |
|-----|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|------------------------------|
| 186 | Antimicrobials<br>and antibiotic<br>resistant<br>bacteria, agro=<br>chemicals | Ampicillin,<br>Chloramphenic<br>ol,<br>Erythromycin,<br>BenfuraCarb,<br>Carbofuran;RBs to both β-<br>lactam<br>antibiotics<br>(ampicillin and<br>cephalothin)<br>and to<br>erythromycin<br>(macrolide) and<br>streptomycin<br>(aminoglycosid<br>e) | Source,<br>drinking<br>water,<br>distribution<br>water | X | heterotrop<br>hic plate<br>count;<br>Colilert®-<br>18/Quanti-<br>Tray® and<br>Colilert®-<br>18/Quanti-<br>Tray®<br>2000;<br>HPLC-<br>hybrid<br>triple<br>quadrupole<br>ion trap<br>mass<br>spectromet<br>er; disc<br>diffusion<br>method<br>98 | T<br>(150) | X | CC<br>bezuidenhout<br>, 2016 |
| 187 | Micro=<br>plastics                                                            | Bisphenol A,<br>Phthalate and<br>Calcium<br>stearate;<br>Polyethylene                                                                                                                                                                              | Freshwater                                             | X | Ecotoxicit<br>y tests –<br>using<br>Zebra fish<br>Danio                                                                                                                                                                                        | Т          | X | K Mgaba, ?                   |

|     |                                                | (PE),<br>Polypropylene<br>(PP),<br>Polyvinyl<br>chloride (PVC) |                                  |   | rerio,<br>shrimps<br>caridina<br>nilotica<br>and<br>freshwater<br>snails,<br>Melanoide<br>s<br>tuberculat<br>e and<br>Algae |   |   |                                                      |
|-----|------------------------------------------------|----------------------------------------------------------------|----------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------|---|---|------------------------------------------------------|
| 188 | Micro=<br>plastics and<br>pharma=<br>ceuticals |                                                                | Water                            | ? | ?                                                                                                                           | Т | X | C<br>Bezuidenhou<br>t, 2019                          |
| 189 | Natural<br>organic matter                      | NOM                                                            | SA water:<br>raw and<br>drinking | X | TOC,<br>DOC,<br>UV254, ;<br>SUVA,<br>HP-SEC,<br>BDOC;<br>GPC; LC-<br>OCD;<br>FEEM<br>spectrosco<br>py                       | Τ | X | SS Marais et<br>al, 2018                             |
| 190 | Agricultural<br>chemicals-<br>pesticides       | Atrazine,<br>Terbutylazine                                     | Catchement<br>water:<br>surface, | ? | ?                                                                                                                           | Т | X | Report No.<br>1956/1/15),<br>Report No.<br>TT 642/15 |

|     |                                                                        |                                                    | ground;<br>sediment; air                                       |             |    |   | Vol 2                                        |
|-----|------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|-------------|----|---|----------------------------------------------|
| 191 | POPs: Organic<br>contaminants<br>and metals                            | Hg;<br>Polychlorinated<br>biphenyls;<br>Chlordane  | Aquatic<br>ecosystems:<br>Sediment,<br>fish and<br>mussels     |             | T  |   | WRC Report<br>No.<br>1977/1/15               |
| 192 |                                                                        |                                                    | Wastewater<br>from edible<br>oil industry                      |             |    | X | WRC Report<br>No. TT<br>702/16               |
| 193 | alkylphenol<br>ethoxylates<br>and<br>brominated<br>flame<br>retardants | NPEO, BPA                                          | Milli-Q<br>water                                               | GC-MS<br>99 | Т  | X | TB Chokwe,<br>2015                           |
| 194 | Pesticides,<br>trace elements                                          |                                                    | River water<br>and sediment                                    |             | NT | X | WRC<br><b>Report no.</b><br><b>TT 739/17</b> |
| 195 | PAHs                                                                   | Benzo(a)pyrene<br>and<br>Dibenz(a,h)ant<br>hracene | Aquatic<br>ecosystems:<br>sediment,<br>fish and bird<br>eggs   |             | Т  | X | WRC Report<br>No.<br>2422/1/16,<br>2016      |
| 196 | Inorganics,<br>Agricultural<br>chemicals                               | Atrazine                                           | surface water<br>resources,<br>sediments<br>and<br>groundwater |             | Т  | X | Vol 1                                        |
| 197 | Various:<br>chemical and                                               |                                                    | Reclaimed<br>wastewater                                        |             | NT |   | CD Swart et s, 2015                          |

|     | microbiologica                                                                                                                                                                                                             |                                                                                                                                                                                                            |   |   |   |   |   |                          |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|--------------------------|
| 198 | microbiologica<br>1<br>Chemicals in<br>laundry<br>industry<br>wastewater/effl<br>uent: salts,<br>phosphates<br>(from<br>detergents),<br>soil,<br>FOGs (fats,<br>oils and<br>greases), heavy<br>metals,<br>residual textile | Triclocarban<br>and Triclosan;<br>Stilbene<br>disulfonates<br>and Coumarin<br>derivatives;<br>Sodium<br>silicate;<br>Hydrotropes<br>include glycols,<br>toluene<br>sTlfonates and<br>Cumene<br>sulfonates; | X | X | X | T | X | CD Swartz et<br>al, 2017 |
|     | material, heat,<br>microbes and<br>process by-<br>products<br>(such as<br>adsorbable<br>organically-<br>bound<br>halogens<br>formed by soil-<br>detergent-<br>water<br>reactions).                                         | Butylated<br>hydroxytoluene<br>,<br>Ethylenediamin<br>etetraacetic<br>acid (EDTA),<br>bronopol,<br>formaldehyde<br>and<br>isothiazolinone<br>s.;<br>alkanolamides<br>and alkylamine<br>oxides              |   |   |   |   |   |                          |

| 199 | Paper and pulp | Organic                          | Wastewater | Х | Х | Т | X | Marlene van |
|-----|----------------|----------------------------------|------------|---|---|---|---|-------------|
|     | industry       | substances                       | from       |   |   |   |   | der Merwe,  |
|     | wastewater     | (COD, BOD),                      | paper/pulp |   |   |   |   | et al, 2017 |
|     | effluent       | Compounds                        | effluent   |   |   |   |   |             |
|     |                | extracted from                   |            |   |   |   |   |             |
|     |                | the wood such                    |            |   |   |   |   |             |
|     |                | as resin acids,                  |            |   |   |   |   |             |
|     |                | etc.,                            |            |   |   |   |   |             |
|     |                | Chlorinated                      |            |   |   |   |   |             |
|     |                | organics                         |            |   |   |   |   |             |
|     |                | (AOX),                           |            |   |   |   |   |             |
|     |                | chlorate                         |            |   |   |   |   |             |
|     |                | (depending on                    |            |   |   |   |   |             |
|     |                | bleaching agent                  |            |   |   |   |   |             |
|     |                | used),                           |            |   |   |   |   |             |
|     |                | <ul> <li>Nitrogen and</li> </ul> |            |   |   |   |   |             |
|     |                | phosphorus                       |            |   |   |   |   |             |
|     |                | based                            |            |   |   |   |   |             |
|     |                | compounds,                       |            |   |   |   |   |             |
|     |                | Suspended                        |            |   |   |   |   |             |
|     |                | solids,                          |            |   |   |   |   |             |
|     |                | • Metals, salts                  |            |   |   |   |   |             |
|     |                | and                              |            |   |   |   |   |             |
|     |                | • Coloured                       |            |   |   |   |   |             |
|     |                | substances                       |            |   |   |   |   |             |
| 200 | Chemicals in   | Polycyclic                       | wastewater | Х | Х | Т | Х | Marlene van |
|     | wastewater     | aromatic                         |            |   |   |   |   | der Merwe,  |
|     | from iron and  | hydrocarbons                     |            |   |   |   |   | 2017        |
|     | steel industry | (PAH) <0.05                      |            |   |   |   |   |             |
|     |                | $mg/\Box$                        |            |   |   |   |   |             |

|     |                                                                                                                                                                                                                                                                                                           | (sum of<br>Fluoranthene,<br>Benzo[b]fluora<br>nthene,<br>Benzo[k]fluora<br>nthene,<br>Benzo[a]pyrene<br>, Indeno[1,2,3-<br>cd]pyrene and<br>Benzo[g,h,i]per<br>ylene |   |   |   |   |   |                                       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---------------------------------------|
| 201 | Chemicals in<br>the textile<br>industry: acids,<br>alkalis, bleach,<br>dyes: reactive<br>dyes, vat dyes,<br>sulphur dyes,<br>some direct<br>dyes (more<br>common in the<br>paper<br>industry), and<br>disperse dyes,<br>salts,<br>size (e.g.<br>starch),<br>stabilisers,<br>surfactants,<br>and additives | Flame<br>retardants                                                                                                                                                  | X | X | X | Т | X | M. Le Roes-<br>Hill. , et al,<br>2017 |

| 202 | CECs in        | Atrazine,       | Xgrab | Chemical     | Т | X | CD Swartz et |
|-----|----------------|-----------------|-------|--------------|---|---|--------------|
|     | reclaimed      | Triclosan,      |       | analyses     |   |   | al, 2018     |
|     | wastewater for | Paracetamol     |       | outsourced   |   |   |              |
|     | potable reuse: | Ammonia,        |       | to           |   |   |              |
|     | pharmaceutical | nitrate plus    |       | LiquidTec    |   |   |              |
|     | s, pesticides, | nitrite,        |       | h (UFS,      |   |   |              |
|     | biocides,      | DOC,            |       | Bloemfont    |   |   |              |
|     | herbicides,    | TOC,            |       | ein);        |   |   |              |
|     | personal care  | EC,             |       | bioassay     |   |   |              |
|     | products,      | pH,             |       | tests for    |   |   |              |
|     | household      | COD,            |       | toxicity:    |   |   |              |
|     | chemiclas,     | Turbidity and   |       | Ames         |   |   |              |
|     | transformation | UV254           |       | mutagenici   |   |   |              |
|     | products,      | absorbance.     |       | ty test,     |   |   |              |
|     | natural        | _               |       | Daphnia      |   |   |              |
|     | chemicals,     | Perfluorinated  |       | 24–48-       |   |   |              |
|     | industrial     | compounds       |       | hour         |   |   |              |
|     | chemicals      | (PFCs) (all     |       | toxicity     |   |   |              |
|     |                | samples)        |       | test, YES    |   |   |              |
|     |                | -               |       | oestogenic   |   |   |              |
|     |                | Perfluorohepta  |       | ity activity |   |   |              |
|     |                | noic acid       |       | test         |   |   |              |
|     |                | (PFHPA),        |       | In vitro     |   |   |              |
|     |                | Perfluorooctan  |       |              |   |   |              |
|     |                | oic acid        |       |              |   |   |              |
|     |                | (PFOA),         |       |              |   |   |              |
|     |                | Perfluorononan  |       |              |   |   |              |
|     |                | oic acid        |       |              |   |   |              |
|     |                | (PFNA),         |       |              |   |   |              |
|     |                | Perfluorooctane |       |              |   |   |              |
|     |                | sulfonate       |       |              |   |   |              |

|     |                |                  |              |   |           | 1 | 1 | 1            |
|-----|----------------|------------------|--------------|---|-----------|---|---|--------------|
|     |                | (PFOS),          |              |   |           |   |   |              |
|     |                | Perfluorodecan   |              |   |           |   |   |              |
|     |                | oic acid         |              |   |           |   |   |              |
|     |                | (PFDA) and       |              |   |           |   |   |              |
|     |                | Perfluoroundec   |              |   |           |   |   |              |
|     |                | anoic acid       |              |   |           |   |   |              |
|     |                | (PFUnDA)         |              |   |           |   |   |              |
|     |                |                  |              |   |           |   |   |              |
|     |                | _ Priority CECs  |              |   |           |   |   |              |
|     |                | (all samples)    |              |   |           |   |   |              |
|     |                | _ Bisphenol A    |              |   |           |   |   |              |
|     |                | (BPA),           |              |   |           |   |   |              |
|     |                | Triclosan, 17α   |              |   |           |   |   |              |
|     |                | Ethinyl          |              |   |           |   |   |              |
|     |                | estradiol (EE2), |              |   |           |   |   |              |
|     |                | Acetaminophen    |              |   |           |   |   |              |
|     |                | , Atrazine,      |              |   |           |   |   |              |
|     |                | Imidacloprid,    |              |   |           |   |   |              |
|     |                | Carbamazepine    |              |   |           |   |   |              |
|     |                | , Lamivudine,    |              |   |           |   |   |              |
|     |                | Simazine,        |              |   |           |   |   |              |
|     |                | Sulfametoxazol   |              |   |           |   |   |              |
|     |                | e,               |              |   |           |   |   |              |
|     |                | Terbuthylazine   |              |   |           |   |   |              |
|     |                | and              |              |   |           |   |   |              |
|     |                | Cinchonidine.    |              |   |           |   |   |              |
| 203 | CECs in        | Atrazine,        | Reclaimed    | X | GC, LC,   | Т | X | CD Swartz et |
| 200 | reclaimed      | 17-beta          | wastewater   |   | with      | - |   | al, 2018     |
|     | wastewater for | Oestradiol,      | , aste water |   | tandem    |   |   | ui, 2010     |
|     | potable reuse: | Triclosan        |              |   | MS (MS2), |   |   |              |
|     | pharmaceutica  | 1110105011       |              |   | triple    |   |   |              |
|     | pharmaceutica  |                  |              |   | uipic     |   |   |              |

|     | sl, personal<br>care products,<br>endocrine<br>disruptors |                                                                       |                                                 |                    | quadrupole<br>(QqQ) MS,<br>ion-trap<br>MS (IT-<br>MS), time-<br>of-flight<br>MS<br>(QTOF-<br>MS)<br>detectors;<br>capillary<br>electropho<br>resis;<br>ELISA<br>100                  |   |   |                          |
|-----|-----------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|--------------------------|
| 204 | CECs                                                      | Perfluorooctan<br>oic acid;<br>Acetaminophen<br>; Bisphenol-A;<br>EE2 | Reclaimed<br>wastewater<br>for potable<br>reuse | Grab,<br>composite | Chemical<br>analyses:<br>UWC – no<br>method<br>details?<br>Bioassay:<br>Ames<br>mutagenici<br>ty test, the<br>Daphnia<br>acute<br>toxicity<br>test and the<br>YES (yeast<br>estrogen | Т | X | CD Swartz et<br>al, 2018 |

|     |                                                              |                                                                 |                                     |           | screen)<br>test,<br>to test for<br>oestrogeni<br>c activity;<br>Risk<br>Assessmen<br>t |   |   |                                                                               |
|-----|--------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------|-----------|----------------------------------------------------------------------------------------|---|---|-------------------------------------------------------------------------------|
| 205 | Emerging<br>substances of<br>concern: anti-<br>retro virals, | Cocaine,<br>MDMA,<br>Methamphetam<br>ine,<br>Efavirenz          | wastewater                          | composite | UPLC-<br>MS/MS<br>101                                                                  |   |   | E Archer, ?                                                                   |
| 206 |                                                              |                                                                 |                                     |           |                                                                                        |   |   | Water<br>Research<br>Commission<br>Report:<br>Report No<br>2432/1/18<br>LINK? |
| 207 | PAHs                                                         |                                                                 | sediment,<br>fish and bird<br>eggs  |           |                                                                                        | Т | X | WRC<br>Report, 2016                                                           |
| 208 | Specific EDCs                                                | BPA,<br>DINP (a<br>phthalate) and<br>EE2 (synthetic<br>hormone) | Bottled water                       |           | Chemical<br>analysis,<br>bioassay                                                      | Т | X |                                                                               |
| 209 | Microplastics                                                |                                                                 | Municipal<br>water, river<br>water, |           |                                                                                        | Т | X | J Bonthuys,<br>2018                                                           |

|     |                                                                        |   | drinking                                                                                       |       |                                       |   |   |                                                                                                                                                                                 |
|-----|------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------|-------|---------------------------------------|---|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 210 | Antimicrobial<br>substances and<br>antibiotic<br>resistant<br>profiles | h | water                                                                                          |       |                                       | Т | X | A Scoping<br>study on the<br>levels of<br>antimicrobial<br>s and<br>presence of<br>antibiotic<br>resistant<br>bacteria in<br>drinking<br>water. WRC<br>Report No.<br>KV 360/16. |
| 211 | Water-borne<br>pathogens                                               |   | rivers,<br>streams,<br>wells, dams,<br>pond water<br>drinking<br>Water,<br>untreated<br>sewage |       |                                       |   | X | WRC Report<br>No:<br>2432/1/18                                                                                                                                                  |
| 212 | Cholerae and<br>non-cholerae<br>causing vibrio<br>pathogens            |   |                                                                                                | Grab? | Spread<br>plate<br>method,<br>MPN-PCR | Τ | X | AI Okoh ,<br>2018                                                                                                                                                               |

|     |                                                          |                                                                                                                                                                                                                                                                                                         | (e.g., crabs,<br>prawn, and<br>lobster) and<br>fish.                                  |   |                                                                                                                                                                                                     |            |   |                                 |
|-----|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|---------------------------------|
| 213 | Diarhoea-<br>causing<br>pathogens in<br>water            | Total coliforms<br>and E. coli.;<br>Clostridium<br>perfringens<br>agar,<br>Salmonella; V.<br>cholera spp.;<br>Shigella spp.;<br>Vibrio spp;<br>protozoan<br>parasites and<br>enteric viruses;<br>Noroviruses,<br>rotaviruses,<br>adenoviruses,<br>several other<br>endemic<br>viruses as well<br>as<br> | water from<br>household<br>storage<br>containers;<br>surface:<br>river;<br>boreholes. | X | Colilert<br>Quanti-<br>TrayR/200<br>0<br>technique<br>(IDEXX);<br>oxidase<br>test, API-<br>20E test,<br>Gram-<br>staining<br>and<br>standardise<br>d<br>published<br>multiplex<br>PCR<br>protocols. | Т          | X | N Potgieter,<br>et al, 2018     |
| 214 | Microbial<br>pathogens in<br>water resource<br>sediments | three bacterial<br>pathogens<br>(Salmonella<br>sp., Shigella sp.                                                                                                                                                                                                                                        | Water,<br>sediment                                                                    |   |                                                                                                                                                                                                     | T<br>(172) | X | WRC Report<br>No.<br>2169/1/15) |

|                                         |  | and V.<br>cholera); dition,<br>E.coli<br>(indicator<br>bacteria) |  |  |  |
|-----------------------------------------|--|------------------------------------------------------------------|--|--|--|
| 214<br>articles/<br>References<br>total |  |                                                                  |  |  |  |
| 21 x review<br>articles<br>= 9.7 %      |  |                                                                  |  |  |  |

MS methods: 101 papers

Per and polyfluoro compounds: 18

## Table S3 Initial raw data for research gaps only: Word version

| Number | High level Class/description | Research gap – detailed description of actual gap                                                                                | Total<br>(% of<br>total)<br>[Rank] |
|--------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1      | Toxicity/Risk/Impact         | 1 Prognostic and diagnostic impact assessment                                                                                    | 260<br>(21.5<br>%)<br>[1]          |
|        |                              | 2 Total risk burden of PFOS and PFOA                                                                                             |                                    |
|        |                              | 3 Distribution with regards to human health                                                                                      |                                    |
|        |                              | 4 Environmental risks, spatially and temporally                                                                                  |                                    |
|        |                              | 5 Risks for human health                                                                                                         |                                    |
|        |                              | 6 Combined effects in the human body                                                                                             |                                    |
|        |                              | 7 Tests for toxicology                                                                                                           |                                    |
|        |                              | 8 Tests for risk assessment                                                                                                      |                                    |
|        |                              | 9 Association and toxicity of individual CECs in bottled water                                                                   |                                    |
|        |                              | 10 Ecotoxicological effects                                                                                                      |                                    |
|        |                              | 11 Monitoring risk reduction                                                                                                     |                                    |
|        |                              | 12 Transformation products during risk assessment                                                                                |                                    |
|        |                              | 13 Sub-lethal effects on a wide range of aquatic organisms                                                                       |                                    |
|        |                              | 14 Biological consequences of variable duration CEC exposures within                                                             |                                    |
|        |                              | and across generations in aquatic species                                                                                        |                                    |
|        |                              | 15 Linkage of multiple stressors with CEC exposure in aquatic systems                                                            |                                    |
|        |                              | 16 Trophic consequences of CEC exposure                                                                                          |                                    |
|        |                              | 17 Impacts in water bodies                                                                                                       |                                    |
|        |                              | 18 New protocols for ecotoxicity test and measurement of different effects by using different organisms with suitable endpoints. |                                    |
| 19 Impact on human health and environment                               |  |
|-------------------------------------------------------------------------|--|
| 20 Impact on human health and environment - additive effects            |  |
| 21 Additive effects                                                     |  |
| 22 Development of risk-based screening models to predict source, fate   |  |
| and behaviour in water                                                  |  |
| 23 Further work is needed to better understand the effect threshold and |  |
| dose-response relationship of DDTs in marine mammals, which has         |  |
| important conservation implications                                     |  |
| 24 Better development of effective risk ecological assessment methods   |  |
| for this emerging class of insecticides (pyrethroids)                   |  |
| 25 Bioavailable LC50 values for the target pyrethroids                  |  |
| 26 Sediment toxicity studies                                            |  |
| use of Chironomus sp. needs to be considered                            |  |
| development of multi-species sediment toxicity methods                  |  |
| 27 Risk assessment                                                      |  |
| toxic contribution from other pesticides which co-occur with            |  |
| pyrethroids in sediment should also be considered                       |  |
| the adverse effects of long-term exposure to pyrethroids in sediment at |  |
| sublethal levels                                                        |  |
| 28 Assessment of potential environmental and human risks                |  |
| Nanomaterials (NMs) pose.                                               |  |
| 29 The toxicological impact of NMs need to be assessed for their        |  |
| potential toxicity and bioaccumalation                                  |  |
| 30 Models for impacts of multiple contaminants and larger spatial       |  |
| scales                                                                  |  |
| 31 Impacts of nano-remediation                                          |  |
| 32 Toxicity of DEET to aquatic species still remains poorly assessed    |  |
| 33 Further studies are required to assess the impact of longterm        |  |
| exposure to low doses along with a mixture of other trace organic       |  |
| contaminants                                                            |  |

| 34 Ecotoxicity tests, particularly in fish population already affected by |  |
|---------------------------------------------------------------------------|--|
| <br>endocrine disruptors down stream of wastewater treatment plants       |  |
| <br>35 DCF impact on human health                                         |  |
| 36 Future studies may include the toxicity studies of photo-              |  |
| transformation products of DCF and mixture toxicity                       |  |
| 37 DCF - chronic exposure studies at lower but environmentally            |  |
| relevant concentrations                                                   |  |
| 38 Toxicity to aquatic organisms                                          |  |
| 39 Guidelines and strategies for environmental risk assessment            |  |
| 40 Exposure studies using complex mixtures                                |  |
| 41 Feeding studies to determine the real level of risk                    |  |
| 42 Potential ecological risk of most pharmaceuticals after their          |  |
| introduction in the aquatic environment                                   |  |
| 43 Derivation of QSAR-based PNECs in future assessments                   |  |
| 44 Health impacts - research on the health impacts of micro-plastics,     |  |
| both human and non-human                                                  |  |
| 45 Long-term exposure by consuming these freshwater organisms             |  |
| remains unclear                                                           |  |
| 46 Additional health effects data for some contaminants with limited      |  |
| data would help strengthen the conclusions on the public health           |  |
| significance from exposure to contaminants                                |  |
| 47 The relative potential human health risk (s) associated with the       |  |
| presence in drinking water of chemical contaminants derived from the      |  |
| source water along with those that may be associated with contaminants    |  |
| formed during disinfection (disinfection byproducts) and those that       |  |
| may be posed by residual microbial (bacterial, viral) contaminants.       |  |
| 48 Additional health effects data for some contaminants with limited      |  |
| data would help strengthen the conclusions on the public health           |  |
| significance from exposure to contaminants                                |  |
|                                                                           |  |

| 49 Exposure assessment should emphasize the subset of pharmaceuticals and CECs that were detected in both source and treated water samples                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 50 Understanding the potential for human health and ecosystem effects<br>from the presence and distribution of pharmaceuticals in source and<br>treated waters,                |
| 51 Comprehensive multiple contaminant assessment of sublethal toxicological effects.                                                                                           |
| 52 The presence of microplastics in the marine environment poses a great threat to the entire ecosystem                                                                        |
| 53 Environmental hazards and risks of many antihistamines to non-<br>target species are poorly understood.                                                                     |
| 54 Limited ecotoxicology data and monitoring information for coastal and marine waters                                                                                         |
| 55 Loratidine: future research is needed to understand aquatic toxicology, hazards and risks associated with this AH                                                           |
| 56 Water quality hazards of antihistamines poorly understood within and among regions                                                                                          |
| 57 Chronic antihistamine exposures to non-target species must be<br>considered in these urbanising surface waters                                                              |
| 58 Identifying where environmental risks of specific pharmaceuticals are elevated                                                                                              |
| 59 Environmental risks of antihistamines in these regions remain poorly<br>understood, e.g., The Middle East, Russia and Asia-Pacific                                          |
| 60 Only 11AH have been studied for toxicological effects in non-target aquatic species                                                                                         |
| 61 Aquatic toxicity - future efforts are needed to carefully examine<br>solubility considerations for ecotoxicity studies with<br>diphenylhydramine and other pharmaceuticals. |

| 62 Environmental ecotoxicology studies of antihistamine metabolites    |  |
|------------------------------------------------------------------------|--|
| and degradates are lacking                                             |  |
| 63 Bioaccumulation and associated hazards of pharmaceuticals and       |  |
| other ionisable chemicals in aquatic life, including edible fish and   |  |
| shellfish                                                              |  |
| 64 Environmental hazards and risks of many antihistamines remain       |  |
| poorly understood for non-target species, particularly in coastal      |  |
| environments                                                           |  |
| 65 Ecotoxicology studies of antihistamine metabolites and degradates   |  |
| are lacking,                                                           |  |
| 66 Determining exposure levels and possible standards for drinking     |  |
| water and food products.                                               |  |
| 67 Comprehensive assessment of the health risks of perchlorate by      |  |
| studying its abundance in the environment and food sources, as well as |  |
| the pathways of exposure, is highly desirable                          |  |
| 68 A risk assessment could be used to develop a standard for           |  |
| perchlorate in drinking water.                                         |  |
| 69 To date little is known about the impacts of their environmental    |  |
| presence on humans                                                     |  |
| 70 To further the current understanding of the toxicological           |  |
| implications of chronic exposure to complex mixtures of PPCPs at sub-  |  |
| therapeutic levels in both target and non-target organisms             |  |
| 71 More research is needed to characterise the influence of such       |  |
| exposure on the status of public health in contaminated areas          |  |
| 72 Ecotoxicity studies rarely report tissue concentrations             |  |
| 73 Ecotoxicological studies should be based on reliable and robust     |  |
| analytical methods within the field                                    |  |
| 74 Measurement of internal concentrations: in biota will enable more   |  |
| reliable risk assessment for pharmaceuticals in the environment than   |  |
| those based solely on concentrations in water                          |  |
| those based solely on concentrations in water                          |  |

| 75 Effect-based studies should also quantify compound concentrations     |  |
|--------------------------------------------------------------------------|--|
| with the observed effects in biota                                       |  |
|                                                                          |  |
| 76 We remain unclear on the the potential combined effects of            |  |
| pharmaceuticals on biota                                                 |  |
| 77 Presence/risk: many CECS are incompletely removed during water        |  |
| treatment and thus are present in water distributed for potable use      |  |
| 78 Extensive use of pesticides has created a concern in general as their |  |
| residues are widely found in various ecological niches                   |  |
| 79 Future studies are needed to understand risks of ERY and other        |  |
| antibiotics to human health and the environment                          |  |
| 80 Need to assess and manage pharmaceutical risks in environment         |  |
| 81 Future investigations on ERY risks to water and food supplies and     |  |
| associated ecosystems are recommended in these Lower-Income              |  |
| countries and rapidly developing megacities regions                      |  |
|                                                                          |  |
| 82 Toxicity of DBDPE should be further investigated                      |  |
| 83 Human exposure of DBDPE should be further investigated                |  |
| 84 Health effect of DBDPE should be further investigated                 |  |
| 85 Further investigations of the sources, fates, and health effects of   |  |
| TBBPA in China should be a huge and urgent task, m?pollutant to the      |  |
| environment                                                              |  |
| 86 It is suggested that the contamination levels, human exposure,        |  |
| toxicity and health effect of EBFR need to be deep investigated in a     |  |
| future study, especially for the DBDPE                                   |  |
| 87 Limited reviews have investigated sources, behaviour and health       |  |
| risks of antimicrobial resistance genes (ARGS) in the wastewater-        |  |
| human pathway.                                                           |  |
|                                                                          |  |
| 88 Factors predisposing human and ecological health risks associated     |  |
| with antimicrobial resistance, particularly in developing countries, are |  |
| largely missing in literature                                            |  |

| 89 Human ecotoxicology and health risks: limited information is              |  |
|------------------------------------------------------------------------------|--|
| available on the relative contribution of the various routes to the transfer |  |
| of args into humans.                                                         |  |
| 90 To better understand the health risks of args in wastewaters,             |  |
| systematic ecotoxicological case studies considering typical                 |  |
| concentration in the various sources, intake rates, fate processes and       |  |
| threshold values are required.                                               |  |
| 91 Current ecological risk assessment protocols for synthetic chemicals      |  |
| including pharmaceuticals, animal feeds and other compounds are often        |  |
| limited to the individual compounds using a single bioassay :species         |  |
| known to be sensitive to the chemical                                        |  |
| 92 Review of risk assessment protocols to include potential risks            |  |
| associated with selecting for antimicrobial resistance, and interactions     |  |
| between antimicrobial resistance and other stressors considering             |  |
| various trophic levels including single species, populations, trophic        |  |
| interactions and ecosystems                                                  |  |
| 93 To minimise health risks of args, a risk reduction framework was          |  |
| highlighted to reduce antimicrobials in the environment,                     |  |
| 94 Pathogens: threats to human health and ecosystems from these              |  |
| compounds (ARGs) occurring in sewage sludge                                  |  |
| 95 The pathogenicity of many of these novel (bat) viruses for humans         |  |
| remains unknown, and further efforts are needed to determine their           |  |
| potential threats to humans                                                  |  |
| 96 Bat viruses: further efforts are needed to determine (bat viruses) their  |  |
| potential threats to humans                                                  |  |
| 97 What are the risk factors leading to infections of humans or              |  |
| intermediate animals exposed to bat-borne viruses                            |  |
| 98 POPs (persistent organic pollutants) and whale sharks:                    |  |
| ecotoxicological risk assessment of these endangered species - on            |  |
| whale shark biopsies and in other large filter feeder species                |  |
| while shark clopsies and in other hige inter feeder species                  |  |

| 99 Toxicokinetics of dioxins and PBDEs or field studies of the exposure, accumulation and effect of nanoscale particulate                                                                                                                                                        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| contaminants                                                                                                                                                                                                                                                                     |  |
| 100 Comparatively little attention has been paid to the risk assessment of azole anti-fungal drugs                                                                                                                                                                               |  |
| 101 Azole antifungal drugs: validation studies should be conducted for those drugs that seem to pose human health and ecological risks                                                                                                                                           |  |
| 102 Future studies to deepen research on the determination of single<br>and mixture toxicity of the azole anti-fungals                                                                                                                                                           |  |
| 103 Anti-TB drugs: since antimicrobial compounds are mostly non-<br>biodegradable (eg, INH) they may be toxic to sludge bacteria and kill<br>them. Consequently this could decrease the efficiency of WWTP                                                                       |  |
| biological processes since sludge bacterial population will be decreased.                                                                                                                                                                                                        |  |
| 104 Although antimicrobial compounds have been detected in low concentrations in water sources, their presence is another public health                                                                                                                                          |  |
| concern due to their unknown chronic health effects that can happen<br>after long-term ingestion through drinking water                                                                                                                                                          |  |
| 105 ARVDs: the environmental impact of which is still relatively unknown                                                                                                                                                                                                         |  |
| 106 Generally, the prevalence of ARVDs in aquatic ssystems evident<br>from this and other studies reflect the widespread and sustained<br>utilization of these drugs, which may warrant further investigation into<br>the health implications of pre-exposure to these compounds |  |
| <ul> <li>107 Additional investigations are required on their toxicity - TCS, TCC</li> <li>108 Quantification of potential risks of their ENMs metabolites -</li> </ul>                                                                                                           |  |
| unquantified to date<br>109 Scarcity of chronic data in organisms usually used for risk                                                                                                                                                                                          |  |
| assessment in different environmental compartments render it<br>impossible to estimate the TCS and TCC long term impacts                                                                                                                                                         |  |

| 110 ENMs: programs in different environmental systems including           |  |
|---------------------------------------------------------------------------|--|
| sediments and pore water as well as studies on their chronic toxicity to  |  |
| different taxa. Such screening models can allow the identification of hot |  |
| spots and ultimately aid to develop appropriate and corrective strategies |  |
| for specific situations and locales.                                      |  |
| 111 There is the necessity to link likely implications of both TCS and    |  |
| TCC, or their mixtures, to human health through the food chain-           |  |
| future work is to consider interactions between TCS and TCC as a          |  |
| mixture, and the impact on the aquatic organisms where effects may be     |  |
| antagonistic, additive, or synergistic such that individual chemicals     |  |
| effects can either be reduced or enhanced                                 |  |
| 112 Microplastics: Globally, freshwater systems are among the most        |  |
| threatened of habitats and it is important that this emerging threat is   |  |
| recognized and mitigated.                                                 |  |
| 113 Rare earth elements/REEs: to minimize health risks, a conceptual      |  |
| framework and possible mitigation measures are required                   |  |
| 114 REEs: understanding the mixture effect of REEs and other stressors    |  |
| such as organic pollutants on acute and chronic ecotoxicology             |  |
| 115 REEs: Detailed ecotoxicological data on exposure routes, daily        |  |
| intakes, metabolism, and adverse effects in humans remain scarce.         |  |
| 116 There is a need for more eco-toxicological assessment on the sub-     |  |
| lethal effects of ECs and polluted water systems into identifying MIEs,   |  |
| KEs, KERs which certain ECs can modulate to advance current risk          |  |
| assessment approaches                                                     |  |
| 117 ECs: Drawing definite conclusions regarding the health impact         |  |
| which these pollutants may cause when entering environmental water        |  |
| is no simple task, considering that these pollutants are present in       |  |
| complex mixtures with varying physicochemical properties, as well as      |  |
| their varying affinities to modulate a range of molecular and cellular    |  |
| pathways in wildlife species                                              |  |

| 118: Relationship between general health status and PFAA exposure in        |
|-----------------------------------------------------------------------------|
| <br>wildlife and humans is an area greatly understudied.                    |
| 119: Humans are impacted by disease ; studies have yet to account for       |
| the influence potential changes in health status may have on PFAA           |
| burdens in an organism                                                      |
| 120: Global action plan on antimicrobial resistance: WHO laid down 5        |
| focal approaches in addressing the human risk associated with RAbs:         |
| A awareness creation through education, communication, and training         |
| B strengthening the knowledge and evidence base through surveillance        |
| and research                                                                |
| C reducing incidence of infection through sanitation, hygiene and           |
| infection control measures                                                  |
| D optimizing use of antimicrobial medicines in human and animal             |
| health                                                                      |
| E develop economic case for sustainable investment with respect to the      |
| needs of individual countries                                               |
| 121 Effect of RAbs on human and biotic components of the                    |
| environment include toxicity and emergence of difficult-to-control          |
| superbug. Despite global concern, little research inputs :encompassing      |
| this area have been done so far in S Africa                                 |
| 122 Potential risks of the increasing variety and volume of engineered      |
| nanomaterials (ENMs) entering into the ecosystem remain poorly              |
| quantified.                                                                 |
| 123 SUGEs: Identifying dormant human exposure pathways and health           |
| risk assessment, including ecotoxicology and human toxicology of            |
| various TGCs using environmentally relevant concentrations                  |
| <br>124 Overall reduction of diclofenac by users, increasing the efficiency |
| of WWTPs and periodic monitoring of diclofenac and its                      |
| metabolites/transformation products in all environmental                    |
|                                                                             |

| compartments should have high priority to both protect the health of the |  |
|--------------------------------------------------------------------------|--|
| population and reduce diclofenac contamination in the water cycle        |  |
| 125 Diclofenac: this pharmaceutical drug deriving from wastewaters       |  |
| of WWTPs and/or direct entry from household and pharmaceutical           |  |
| industries could accumulate in the aquatic environment, which may        |  |
| adversely affect aquatic life                                            |  |
| 126 POPs: lack of human animal and wildlife exposure data. There is      |  |
| no data for various matrices including indoor and outdoor air exposure   |  |
| assessment in workplaces/homes, cored sediments, ground and bore-        |  |
| hole water, wildlife-avian population data, amongst others.to address    |  |
| these knowledge gaps, further studies would be required.                 |  |
| 127 Knowledge about impacts of microplastics exposure on aquatic         |  |
| primary producers, the trophic transfer process of microplastics and     |  |
| associated substances, and implications of consuming aquatic products    |  |
| for human health is much less known.                                     |  |
| 128 Conduct extensive monitoring programs on the abundance of            |  |
| microplastics in aquatic products that are at the point of human         |  |
| consumption in order to calculate the amount of microplastics            |  |
| introduced into humans via consuming aquatic products                    |  |
|                                                                          |  |
| 129 Focus more efforts on the presence and toxicity of nanoplastics in   |  |
| aquatic organisms and evaluation of the implications for human health    |  |
| 130 Most countries in Africa and Asia – major contributors of global     |  |
| plastic pollution – are yet to come to terms with the enormity of        |  |
| microplastic pollution.                                                  |  |
| 131 SSRIs: Present study employed a hazard assessment approach           |  |
| using THVs without a 1000 safety factor as recommended. If this safety   |  |
| factor had been used, then consistent exceedances would have been        |  |
| observed for these SSRIs across matrices, regions and treatment          |  |
| technologies                                                             |  |

| 132 The survival of microbial pathogens in chlorinated effluents is a    | 1 |
|--------------------------------------------------------------------------|---|
|                                                                          |   |
| cause of concern over and above the potential health hazards associated  |   |
| with exposure to poorly treated effluents                                |   |
| 133 Due to variability in spatio-temporal scale of given processes, the  |   |
| comprehensive characterization of the links between the surface,         |   |
| unsaturated and saturated zones in response to land use changes and the  |   |
| associated contamination risk remains a challenge                        |   |
| 134 Processes such as shale gas exploitation (hydraulic fracturing) are  |   |
| among those which have come under scrutiny as a potential source of      |   |
| groundwater contamination                                                |   |
| 135 There is also a global need for effective early warning systems that |   |
| are capable of anticipating risks associated with compounds used before  |   |
| they become "contaminants of emerging concern""                          |   |
| 136 In many developing countries, poor communities downstream of         |   |
| mining operations have little access to service provision Are            |   |
| dependent on local streams, wetlands and groundwater sources for their   |   |
| water supply                                                             |   |
| Many are at risk of acute metal toxicity from heavy metals               |   |
| 137 Parabens: to consider the potential risks of the consumption of      |   |
| 1 1                                                                      |   |
| these waters (tap, river, well, wastewater), knowing that compounds      |   |
| such as parabens have been categorized as endocrine- disrupting          |   |
| compounds.                                                               |   |
| 138 1,4-dioxane: Sensitive transcriptomic, metabolic and stem cell       |   |
| studies are needed to understand 1,4-dioxane-induced early effects in    |   |
| the liver that can lead to genotoxicity and carcinogenesis               |   |
| 139 1,4-dioxane: research to investigate co-occurring exposures          |   |
| Past epidemiologic study results may have been confounded by             |   |
| exposure of human subjects to other solvents (and/or risk factors) since |   |
| few studies isolated exposure to common co-occurring 1,4-dioxane         |   |
| contaminants, such as TCE or 1,1,1-TCA.                                  |   |
|                                                                          |   |

| Therefore it is important to consider co-contaminants when studying       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,4-dioxane.                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 140 Also groundwater is frequently used as as a potable-water source      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| in many areas in Latin America, and contamination of these sources        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| could have a direct impact on human health                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 141 Another possible threat to human health is the use of wastewater      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| for agricultural irrigation, eg in Mexico.                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 142 The low number of studies regarding antibiotic resistance is also     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| concerning, once the spread of antibiotic –resistant bacteria could be a  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| big threat to human health in the next years                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 143 The number of chemicals produced and consumed rises every day         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| and new info about their consequences in the environment are              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| discovered                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Therefore, priority lists must be updated periodically and should be      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| always based on up-to-date information and data (occurrence,              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| determination, toxicology) obtained in the country or target area.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 144 PAH, PFOS: The risk assessment was based on EQS and PNEC              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| values, available in literature for less than a third of the investigated |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| compounds.                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| These ecotoxicology thresholds can be determined by in-silico             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| approaches using large uncertainty factors, and undergo regular           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| revisions accounting for new scientific evidences, which can drastically  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| change the HQ determined here.                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Future research should focus on the refinement of these thresholds,       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| especially in the context of complex mixtures.                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 145 More research should be devoted to the toxicology of emerging         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                           | <ul> <li>1,4-dioxane.</li> <li>140 Also groundwater is frequently used as as a potable-water source<br/>in many areas in Latin America, and contamination of these sources<br/>could have a direct impact on human health</li> <li>141 Another possible threat to human health is the use of wastewater<br/>for agricultural irrigation, eg in Mexico.</li> <li>142 The low number of studies regarding antibiotic resistance is also<br/>concerning, once the spread of antibiotic –resistant bacteria could be a<br/>big threat to human health in the next years</li> <li>143 The number of chemicals produced and consumed rises every day<br/>and new info about their consequences in the environment are<br/>discovered</li> <li>Therefore, priority lists must be updated periodically and should be<br/>always based on up-to-date information and data (occurrence,<br/>determination, toxicology) obtained in the country or target area.</li> <li>144 PAH, PFOS: The risk assessment was based on EQS and PNEC<br/>values, available in literature for less than a third of the investigated<br/>compounds.</li> <li>These ecotoxicology thresholds can be determined by in-silico<br/>approaches using large uncertainty factors, and undergo regular<br/>revisions accounting for new scientific evidences, which can drastically<br/>change the HQ determined here.</li> <li>Future research should focus on the refinement of these thresholds,<br/>especially in the context of complex mixtures.</li> </ul> |

| 146 Light-based mechanisms may also reduce the risks associated with      |  |
|---------------------------------------------------------------------------|--|
| antibiotic resistance in algal WWT through disinfection processes and     |  |
| the destruction of antibiotic resistance genes                            |  |
| 147 The issue of groundwater as drinking water by 68% of population       |  |
| surveyed raises concerns about population exposure and potential          |  |
| health risks                                                              |  |
| 148 The African penguin population has crashed and seems to be            |  |
| reducing even further.                                                    |  |
| 1Whether chlorinated, brominated and fluorinated organic pollutants       |  |
| are solely responsible is unlikely,, but it may be contributing, as could |  |
| compounds that have not yet been measured such as emerging                |  |
| chemicals, eg, chlorinated naphthalenes and pharmaceuticals               |  |
| 2 Sub-lethal effects, such as eggshell thinning and desiccation changes   |  |
| in reproductive effort since exposure, and behavioural changes that may   |  |
| be affected by chemical pollutants also cannot be ruled out and needs     |  |
| further investigation                                                     |  |
| 149 While the risk/benefit assessment is complicated, consumption of      |  |
| several species of fish including from Charleston Harbor and its          |  |
| tributaries may pose risks as PFAS (especially PFOS) were identified      |  |
| as potential chemicals of concern                                         |  |
| 150 The detected residues of PFOS found in fish from Charlestown          |  |
| estuarine waters may be a potential risk for the health of consumers      |  |
| with elevated fish consumption                                            |  |
| 151 Even though seldom toxicological data are recognized about these      |  |
| emerging mycotoxins, to date, the potential threat they can present to    |  |
| the consumer health cannot be ignored                                     |  |
| 152 Mycotoxins: enniactins contamination: the low concentrations          |  |
| detected in this study might not have any consequences for human          |  |
| health.                                                                   |  |
|                                                                           |  |

| However to date owthere connet accent the effect of their charges         |
|---------------------------------------------------------------------------|
| However to date, authors cannot assert the effect of their chronic        |
| exposure on human health due to the lack of relevant toxicity data in     |
| vivo                                                                      |
| 153 Further studies are required to investigate the contribution of pearl |
| millet in the daily intake of mycotoxins by Tunisian consumer for the     |
| monitoring of the risk ssessment                                          |
| 154 Mycotoxin risk assessment in Tunisian pearl millet revealed a         |
| worrisome situation that have to be faced by setting up strenuous         |
| regulatory thresholds and a strict control system within the food and     |
| feed trade, in order to prevent and narrow mycotoxins as a major issue    |
| requiring priority attention                                              |
| the current regulations mostly take account about major mycotoxins        |
| namely AFs, OTA, DON, ZEA, FBs and scarcely about emerging                |
| mycotoxins and derivatives produced by several fungi occurring in food    |
| and feed                                                                  |
|                                                                           |
| Consequently the undeniable toxicological effects on human and            |
| animals health associated to a mixture of toxic metabolites exposure,     |
| highlighted the obvious challenge to widen the legislations in order to   |
| encompass further mycotoxins with respect to the food consumption         |
| patterns                                                                  |
| 155 Increased efforts towards integrating data and observations of        |
| reproductive anomalies in wild populations exposed to emerging            |
| contaminants and endocrine disrupting substances like pesticides, are     |
| recommended                                                               |
| This will aid better understanding of the effects of endocrine-           |
| modulating chemicals and other environmental stressors on reprotoxic      |
| effects in wild populations                                               |
| 156 Metal elements in sea turtles: Mercury concentrations in egg          |
| contents were low compared with available data, and also did not          |
| -                                                                         |
| exceed mercurys TRV for bird eggs                                         |

| The TRVs for Sr and Cu were exceeded. However, the hatching success         |  |
|-----------------------------------------------------------------------------|--|
| of the S African leather backs is such to suggest that there is very little |  |
| toxicological influence, although sub-lethal effects and mixture effects    |  |
| should not be ignored                                                       |  |
| 157 Sea turtles: In addition to organic compounds, like DDE, some           |  |
| metals are also known endocrine disruptors and may influence sex            |  |
| ratios during development without affecting hatching success.               |  |
| There is also the added complication from climate change                    |  |
| 158 TRV for copper is between 10-20 mg/kg dm, which was reached             |  |
| and exceeded in Crocodile Farm and wild eggs. Cu may therefore pose         |  |
| a threat to developing crocodiles                                           |  |
| 159 TRV for Se is 8 mg/kg dm – the highest found in a wild crocodile        |  |
|                                                                             |  |
| egg was 5.8 mg/kg dm. Se may therefore also pose a risk to the              |  |
| developing embryo                                                           |  |
| 160 There are 5 publications on metallic elements in Nile Crocodile         |  |
| tissues other than eggs. The 3 that measured Hg all concluded that this     |  |
| element is of concern                                                       |  |
| 161 Metals in crocodiles: there are very few toxicological publications     |  |
| on other freshwater, marine, or terrestrial reptiles from Afriaca           |  |
| The findings in Zimbabwe, and those represented here, indicates a large     |  |
| gap in our understanding of the concentrations and threats of metals and    |  |
| metalloids in an important class of animals in Africa                       |  |
| 162 Metals in crocodile eggs: at least Hg, Se and Cu were identified        |  |
| here as metals of concern.                                                  |  |
| Mercury and copper are waste, industrial and mining-related, and this       |  |
|                                                                             |  |
| concern should therefore be extended to all areas where the four,           |  |
| currently recognized, African crocodiles occur                              |  |
| 163 Metals in crocodile eggs: Fe was identified as a possible contributor   |  |
| to thickening of egg shells as a barrier to gas and water exchange,         |  |

| possibly increasing the effort required for the hatchling to emerge from |  |
|--------------------------------------------------------------------------|--|
| tightly packed shells under sand or nesting materials                    |  |
| 164 Considering the increasing international focus on mercury, and       |  |
| recognizing that the major river systems of the KNP are trans-boundary,  |  |
| underscores the need for further research on the biology and             |  |
| ecotoxicology of all African                                             |  |
| reptiles and associated habitats                                         |  |
| 165 The analysis of emerging contaminants could help to define more      |  |
| comprehensive or exhaustive chemical contamination profiles,             |  |
| although this study demonstrated that classically and historically       |  |
| monitored contaminants are already very informative                      |  |
| 166 PCBs: high levels of these chemicals (PCBs) in the water imply       |  |
| high exposure risk to the immediate communities subsisting on            |  |
| resources from the water as well as to the general population, since the |  |
| pollutants will disperse up to several kilometres from the contamination |  |
| source and may persist for decades, given their high half-lives.         |  |
| 167 Anthropogenic pressure in the form of discharge of untreated         |  |
| wastewaters, cause the bacteriological changes of the riverine           |  |
| ecosystem                                                                |  |
| Bacteriological changes are accompanied by an increase in silt and clay  |  |
| fractions together with increased concentration of heavy metals in       |  |
| sediment                                                                 |  |
| Input of wastewaters from human and animal healthcare centres results    |  |
| in the appearance of clinically important CRB42 (carbapenem-resistant    |  |
| bacteria) in both river water and sediment.                              |  |
| 168 Disinfection of hospital wastewater prior to its discharge into the  |  |
| natural environment should be performed in order to avoid both the       |  |
| propagation of CRB42 in the environment and consequent public-           |  |
| health threat.                                                           |  |
| 1                                                                        |  |

| 169 Synthetic microfiber pollution and ingestion poses a potential           |  |
|------------------------------------------------------------------------------|--|
| threat to the health of not only marine and freshwater ecosystems, but       |  |
| also humans                                                                  |  |
| 170 It is important to note that at present, there is no scientific evidence |  |
| for chemical, physical or vector-related impacts of microfiber ingestion     |  |
| on human health                                                              |  |
| 171: Organophosphorus flame retardants: Ongoing toxicological                |  |
| studies have shown several toxic effects of these compounds, such as         |  |
| the potential for ecological and human health concerns of neurotoxin         |  |
| and carcinogenic nature                                                      |  |
| 172 The extent and magnitude of OPs (organophosphorus compounds)             |  |
|                                                                              |  |
| occurrence in the environment, combined with striking structural             |  |
| similarity to toxic organophosphorus pesticides, has led to public           |  |
| concern over risks posed by these substances.                                |  |
| 173 Taking into account the high levels of these pollutants in WWTW          |  |
| effluents, long-term                                                         |  |
| exposure and bioaccumulation of these OPFRs and other emerging               |  |
| flame retardants in the aquatic environment, indicates that further          |  |
| studies are needed to define the environmental risk produced by these        |  |
| pollutants                                                                   |  |
| 174 OCPs, PCBs, - these contaminants are sources of various                  |  |
| environmental and human health hazards due to their biomagnification         |  |
| through the food chain.                                                      |  |
| 175 OCPs, PCBs: Humans are exposed to them mainly through water              |  |
| and food consumption or the physical environment which may be                |  |
| contaminated                                                                 |  |
| 176 Genetically modified transgenic Bt maize plants: Environmental           |  |
|                                                                              |  |
| risk assessments tend to neglect aquatic ecosystems as a relevant            |  |
| context for assessing the potential risks associated with GM crops           |  |

| 177 Agricultural pesticides: Numerous chronic and acute<br>environmental health risks are associated with agricultural pesticide<br>exposure                                                                                                                                                                                                                        |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 178 Agricultural pesticides: Current study found much higher<br>concentrations of atrazine and other EDCs in drinking water in this<br>study, which presents a much higher potential of exposure and the<br>possibility of a myriad of effects on humans and the environment<br>(fauna, flora)                                                                      |  |
| 179 Agricultural pesticides: further studies are recommended,<br>including epidemiological investigations to establish the prevalence of<br>environmental health risks and specifically to to establish a cause-<br>effect- relationship between human exposure to the studied pesticides<br>and potential environmental health risks highlighted in other studies. |  |
| 180 Pesticides: more South African used pesticides should be studied<br>for endocrine disrupting activity to understand the dose-response<br>relationships, before hoping to embark on predicting health or<br>environmental risk                                                                                                                                   |  |
| 181 Pesticides: modes of action associated with insecticides and<br>herbicides varied and individual chemicals or formulations needs<br>comprehensive testing to predict the mechanism of action                                                                                                                                                                    |  |
| 182 Agricultural chemicals: in general, the application of models in rik assessment of pesticides in South Africa is under-utilised.                                                                                                                                                                                                                                |  |
| 183 Agricultural chemicals: Without adequately defining exposure, it<br>is not possible to reliably assess the risk a pesticide poses to the<br>environment                                                                                                                                                                                                         |  |
| 184 Agricultural chemicals: improved prioritization of environmental<br>risk (to inform environmentally friendly use of pesticides), monitoring<br>and modelling approaches are therefore essential to close the gap on<br>assessing the risks of pesticides in the environment                                                                                     |  |

| 185 Agricultural chemicals: risk assessment at the time of registration    |  |
|----------------------------------------------------------------------------|--|
| would provide a proactive understanding of risks of a chemical prior to    |  |
| approving its use.                                                         |  |
| 186 Agricultural chemicals: a screening approach identifying highly        |  |
|                                                                            |  |
| mobile pesticides and their associated risks should be adopted             |  |
| 187 Agricultural chemicals: as inorganic chemicals have also been          |  |
| implicated in causing ED effects it is important to include their analysis |  |
| to establish a bseline against which to interpret the hazards and risks    |  |
| posed by agricultural chemicals.                                           |  |
| Failure to include these, results in less confidence in interpreting both  |  |
| the bioassay results that may be obtained- and exposure assessments.       |  |
| Use of this water quality data is required in order to meaningfully        |  |
| interpret the context of hazards posed by organics and inorganics,         |  |
| without which a differential diagnosis may be difficult to reach.          |  |
| 188 Agricultural chemicals: the ED bioassays used in this study detect     |  |
| chemicals based on their biological activity and determine the total       |  |
| androgenic and oestrogenic content of of a given sample.                   |  |
| Significant reponses in an in vitro bioassay should be used as an          |  |
| indicator for further investigation using in vivo test models, and/or      |  |
| identification of the active chemical                                      |  |
| 189 Agricultural chemicals: samples collected in the Vals and Renoster     |  |
| rivers however showed comparatively higher values, with some               |  |
| samples exceeding 0.7 ng/L trigger value                                   |  |
| The frequent detection of atrazine, simazine, and terbuthylazine (all      |  |
| known EDCs) in combination with the observed ED bioassay responses         |  |
| highlights this geographical area as a priority for further research,      |  |
| where a more detailed survey of the contamination of human and             |  |
| livestock drinking water resources (surface and groundwater) and           |  |
| associated health risks is recommended.                                    |  |
| associated nearth fisks is recommended.                                    |  |

| 190 Agricultural chemicals: the predicted cancer and toxicity risks       |  |
|---------------------------------------------------------------------------|--|
| based on exposure to pesticides in water in each of the case study sites  |  |
| is low.                                                                   |  |
| Given the inherent risks associated with pesticide exposure, in           |  |
| combination with the fact that this and many other studies have shown     |  |
| that pesticides regularly occur in surface and ground water that is used  |  |
| for human consumption and livestock watering, provides strong             |  |
| justification for the development of risk-based domestic and livestock    |  |
| use water quality guidelines that include priority pesticides used in the |  |
| country.                                                                  |  |
| Indices of use, toxicity and mobility could be used to prioritise         |  |
| pesticides for which water quality guidelines should be developed.        |  |
| 191 PAH, PCB, OC: Contaminant concentrations in many fish species         |  |
| and in mussels were high enough to pose a potential chronic and           |  |
| carcinogenic health risk to human consumers.                              |  |
| 192: There is therefore a need for the development and validation of      |  |
| whole sediment toxicity testing procedures for freshwater and coastal     |  |
| ecosystems in SA, as a tool for determining whether contaminants in       |  |
| sediment are exerting a toxic effect on sediment-dwelling organisms.      |  |
| 193 PAH, PCB, OC pesticide: the concentrations of several chemicals       |  |
| in the tissue of fish caught and mussles collected in Durban Bay and the  |  |
| uMngeni and Isipingo River estuaries were high enough to pose a           |  |
| potential risk to the health of human consumers.                          |  |
| The most notable were PCBs and Mercury                                    |  |
| Since it was never the intent of this study to perform a comprehensive    |  |
| human health risk assessment, it is recommended that a comprehensive      |  |
| risk assessment be performed.                                             |  |
| 194 PAH, PCB, OC: a key unknown in the context of determining the         |  |
| potential human health risk posed by contaminants in fish and shellfish   |  |

| tissue are fish and shallfish communities rates for CA monotional and      |  |
|----------------------------------------------------------------------------|--|
| tissue are fish and shellfish consumption rates for SA recreational and    |  |
| subsistence fishers.                                                       |  |
| 195 PAH, PCB, OC based on the findings of this study there is a            |  |
| possibility that recreational and subsistence consumers in other large     |  |
| coastal cities may also face potential health risks through the            |  |
| consumption of fish and shellfish caught and collected in estuaries and    |  |
| indeed also the freshwater reaches of catchments.                          |  |
| It is therefore recommended that the potential risk of exposure to         |  |
| contaminants through a fish and shellfish consumption pathway be           |  |
| extended to other large coastal cities                                     |  |
| 196 Engineered nanomaterials: Further research should test the             |  |
| applicability of these models in predicting the behavior and toxicity of   |  |
| other nanomaterials to establish their suitability and hence applicability |  |
| in decision making for risk assessment that covers nanomaterials in        |  |
| general                                                                    |  |
| 197 Environmental factors such as pH, ionic strength, and temperature      |  |
| and retention times are relevant environmental factors that require        |  |
| monitoring in the event of accidental release of ENMs to establish         |  |
| expected impacts and potential mitigation measures.                        |  |
| These factors influence the kinetic transport, migration, bioavailability  |  |
|                                                                            |  |
| and effects of ENMs from the point of discharge and could be used to       |  |
| estimate risks of known ENMs discharged                                    |  |
| 198 EDCs: Currently there is no trigger value available for thyroid        |  |
| activity in drinking water.                                                |  |
| Further research to determine this is recommended, as this value is        |  |
| extremely important when doing a health risk assessment.                   |  |
| 199 EDCs removal from wastewater: This study partially quantified          |  |
| the risks resulting from discharging EDCs into receiving water bodies      |  |
| As only a few EDCs were evaluated, there is a need to study additional     |  |
| groups of these compounds.                                                 |  |
|                                                                            |  |

| 200 Emerging and persistent contaminants/pathogens; other microbial communities such as fungi, viruses, and protozoans should be investigated to identify the recurrent biomarkers and their toxigenic compounds<br>201 Emerging and persistent contaminants/pathogens: Th identification of transformation products would lead to the possible synthesis of |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| transformation products that could be used for toxicological studies<br>202 Emerging/persistent contaminants/pathogens: The toxicology of<br>emerging contaminants and/or transformation products should be<br>periodised as regulations and policies are written<br>203 Antibiotic resistant bacteria and genes: considerable body of                       |  |
| <ul><li>205 Antibiotic resistant bacteria and genes: considerable body of knowledge is being generated to establish the occurrence of antibiotics, ARB and ARGs in aquatic systems, particularly in drinking water distribution systems.</li><li>How environmental conditions affect the associated genetic and</li></ul>                                    |  |
| metabolic changes is not clearly understood<br>204 Antibiotic resistant bacteria and genes: Connecting contaminants<br>of emerging concern in aquatic ecosystems to waste and impacts on<br>human health is a theme that is poorly understood and needs to be                                                                                                |  |
| explored205 Test organisms for toxicity assessments: Due to the sensitivitiesobserved over time, H vulgaris may be used for chronic toxicity testingand D pulex for acute toxicity testing206 PCBs: PCBs are still expected to be detected in water due to the                                                                                               |  |
| <ul> <li>206 PCBs: PCBs are still expected to be detected in water due to the environmental recycling of this refractory type of compound</li> <li>207 Cyanobacteria: Cyanobacteria have been found to be potentially toxic to animal and human health</li> <li>208 Microcystin toxins: The presence of toxic O limnetica and/or its</li> </ul>              |  |
| MC toxins in the final drinking water poses a risk to humans and animal health                                                                                                                                                                                                                                                                               |  |

|                                                                           | 1 |
|---------------------------------------------------------------------------|---|
| 209 Trace elements: Even essential trace elements may yield toxic         |   |
| effects when exposure levels become elevated                              |   |
| 210 Trace elements: A health risk is also associated with the             |   |
| consumption of L capensis muscle tissue as As and Se recorded THQ         |   |
| values greater than 1.                                                    |   |
| 211 Trace elements: Future studies performed within the Vaal Dam          |   |
| reservoir should be accompanied by accurate determination of health       |   |
| risk factors for the local population relying on fish from this system as |   |
| a regular food source.                                                    |   |
| 212 Metals: Metals accumulate over time and can pose threats to the       |   |
| condition of the water column and health of benthic marine organisms.     |   |
| Ι                                                                         |   |
| 213 PCB residues: While industries are a key component of the             |   |
| countrys economy, little research has been conducted on PCB               |   |
| contamination and no literature is available for PCB analysis in          |   |
| different organs of fish from the North End Lake                          |   |
| 214 PCB residues: The presence of PCBs in fish of the NE lake could       |   |
| be harmful since they may be biomagnified through the food chain, with    |   |
| humans being the end consumer                                             |   |
| 215 Non steroidal anti inflammatory drugs: More work is required to       |   |
| assess the extent of water pollution in several regions of SA             |   |
| 216 Alkyl phenol ethoxylates: as sewage is known to be released into      |   |
| wetlands and oceanic waters, studies of APE levels in these               |   |
| compartments inhabitants (birds, frogs, algae, daphnia, dolphins, etc)    |   |
| need to be undertaken in order to assess the impact of APEs on            |   |
| biodiversity of such bodies                                               |   |
| 217 Alkyl phenol ethoxylates: there is a paucity of data on the adverse   |   |
| health impacts of NPE1-3. Hence studies should be undertaken to           |   |
| establish the minimum health risk concentration for each isomer as well   |   |
| concentration and manufacture more concentration for each isother us were |   |

| as to investigate the synergic health effect of a combination if different |  |
|----------------------------------------------------------------------------|--|
| environmentally relevant concentrations of APEs                            |  |
| 218 Alkyl phenol ethoxylates: there is a scarcity of data on human         |  |
| biological monitoring for APEs around the globe and more research          |  |
| also needs to be directed toward NPE isomer identification, as the         |  |
| available studies determined exposure to technical mixtures of OPs and     |  |
| NPs                                                                        |  |
| 219 Alkyl phenol ethoxylates: NPE(1-3) as emerging environmental           |  |
| contaminant should be studied systematically to evaluate their potential   |  |
| threat to environmental and human health. To accomplish this goal,         |  |
| research activities should look into, among others:                        |  |
| 1) developing analytical methods to measure these pollutants in a          |  |
| variety of matrices down to trace levels                                   |  |
| 2) fate and transport of NP and NPE(1-3) in air                            |  |
| 3) more toxicity data to assess the effects on terrestrial organisms such  |  |
| as plants                                                                  |  |
| 4) potential effects on wildlife due to long-term exposure to low          |  |
| concentrations of NP and NPEs                                              |  |
| 220 Pharmaceutical and personal care products:- establishing the           |  |
| possible endocrine-disrupting effects of commonly-detected PPCPs           |  |
| and other micro-pollutants through a tiered eco-toxicological approach     |  |
| 221 Pharmaceutical and personal care products: establish and/or            |  |
| improve initiatives such as the National Toxicity Monitoring               |  |
| Programme (NTMP) to assist with environmental risk assessment              |  |
| through the use of AOP (adverse outcome pathway) networks                  |  |
| 222 BTEX in water: In spite of the negative effects they pose to human     |  |
| health, BTEX compounds remain overlooked and untreated in                  |  |
| municipal systems, thereby increasing the risk of water-related diseases   |  |
| through their ingestion                                                    |  |
|                                                                            |  |

| 223 BTEX in water: Studies have reported the presence of btex compounds in drinking water, indicating extensive health risks that may not be immediately evident                                                        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 224 BTEX in water: The use of groundwater (in form of boreholes)<br>increases the risk of these compounds being ingested as they have been<br>reported to naturally occur in groundwater, and are present in many       |  |
| industrial effluents disposed into the environment                                                                                                                                                                      |  |
| 225 Toxic elements: toxicity study using a model organism such as<br>zebra fish will assist in monitoring the toxic effects of potentially toxic<br>elements in reproductive and nervous systems of the organism.       |  |
| 226 CECs in recycling/reuse: combined effects and concentrations are mostly unknown                                                                                                                                     |  |
| 227 CECs in recycling/reuse: under certain conditions, sewage flows<br>back to shore in detectable quantities that could be harmful                                                                                     |  |
| 228 CECs in recycling/reuse: reverse osmosis is not 100% effective for potable water recovery + brine is very toxic (eg, Beaufort West)                                                                                 |  |
| 229 CECS in recycling/reuse: treat the retentate from RO as highly hazardous                                                                                                                                            |  |
| 230 CECs in recycling/reuse: treat sludges from sewage plants as highly hazardous                                                                                                                                       |  |
| 231 CECs in recycling/reuse: implement barriers, monitoring programmes and assessment programmes to eliminate or minimize the risks                                                                                     |  |
| 232 CECS in recycling/reuse: carefully test drinking water from the seawater desalination plants or reused sewage water for toxicity, which need not be costly                                                          |  |
| 233 Engineered nanoparticles: investigation on the bacterial species<br>highly sensitive to the presence of ZnO ENPs, in order to understand<br>which stages of the activated sludge wastewater treatment processes are |  |
| more affected by the presence of nanoparticles. This will help to                                                                                                                                                       |  |

| develop methodologies for overcoming the potential adverse effects of    |  |
|--------------------------------------------------------------------------|--|
| ENP                                                                      |  |
| 234 Engineered nanoparticles: investigations on the impacts of ENP       |  |
| sludge accumulation on sludge treatment processes, such as anaerobic     |  |
| digestion                                                                |  |
| 235 Engineered nanoparticles: elucidation of the mechanism governing     |  |
| ENPs accumulation on sludge and biofilms, which may help assess the      |  |
| possible mitigation of their long-term impacts                           |  |
| 236 Microplastics: to conduct ecotoxicity test to examine effect of      |  |
| different major plastic types, sizes, and shapes in SA on Zebra fish     |  |
| Danio rerio, shrimps caridina nilotica and freshwater snails,            |  |
| Melanoides tuberculate and Algae                                         |  |
| 237 Microplastics: to conduct ecotoxicity test to assess effect of       |  |
| selected plasticizers to different aquatic organisms                     |  |
| 238 Microplastics: to develop methods for toxicity testing to study      |  |
| microplastics in South African freshwater systems                        |  |
| 239 Microplastics: develop appropriate toxicity end points               |  |
| 240 Effluent wastewater: best practise to improve effluent quality:      |  |
| 1solids: install grids over drains to prevent solids from entering wash- |  |
| water                                                                    |  |
| 2 disinfection: use correct disinfection chemicals, eg caustic soda in   |  |
| areas contaminated with fats, anf acids for lime deposits                |  |
| 3 cleaning agents: use cleaning agents in the correct concentrations and |  |
| apply according to manufacturers instructions                            |  |
| 4 degumming: qif possible, reduce amount of phosphoric acid used in      |  |
| degumming by improving the neutralization process or by using            |  |
| alternatives such as enzymes                                             |  |
| 5 maintenance: institute a preventative maintenance protocol: regular    |  |
| servicing of expellers and other mechanical equipment, etc               |  |

| 6 educate staff: make staff aware why its important to reduce the<br>amount of wastewater generated and improve the quality of the |  |
|------------------------------------------------------------------------------------------------------------------------------------|--|
| wastewater                                                                                                                         |  |
| 7 chemical audits: consider substituting different chemicals and/or                                                                |  |
| materials, eg caustic soda in solution may be cheaper than the solid form                                                          |  |
| and results in less loss of consumables, reduced corrosion and improved                                                            |  |
| soap-stockk quality                                                                                                                |  |
| 8 caustic soda usage – monitor addition carefully to prevent                                                                       |  |
| saponification of neutral oil                                                                                                      |  |
| 9 soap splitting- use continuous soap splitting rather than batch to                                                               |  |
| reduce the volume of acid water                                                                                                    |  |
| 10 detergents: minimize the use of detergents in cleaning operations to                                                            |  |
| prevent emulsification of oil in wastewater                                                                                        |  |
| 11 fat traps: use fat traps judiciously- to prevent oil from entering wash-                                                        |  |
| down water                                                                                                                         |  |
| 12 Measure and monitor: the volume of effluent produced from each                                                                  |  |
| area. Monitor the quality of effluent produced from different processes                                                            |  |
| to identify areas where product and/or consumables are being lost                                                                  |  |
| 13 Product recovery: recovery at from effluent to increase soap-stock                                                              |  |
| production and improve wastewater quality                                                                                          |  |
| 241 River water quality: research is also needed to determine the                                                                  |  |
| impact of the identified pollutants on the aquatic ecosystems in the                                                               |  |
| Swannies, Klipdrift and Palmiet Rivers                                                                                             |  |
| 242 Polycyclic aromatic hydrocarbons in aquatic ecosystems: The                                                                    |  |
| number of bio-assays can be broadened to include assays capable of                                                                 |  |
| detecting endocrine disruptive effects                                                                                             |  |
| 243 Polycyclic aromatic hydrocarbons: evaluation of fish species                                                                   |  |
| composition and numbers to further describe pollution effects in the                                                               |  |
| system                                                                                                                             |  |

| Г |                                                                          |  |
|---|--------------------------------------------------------------------------|--|
|   | 244 Agricultural chemicals: The risk a pesticide poses to human health   |  |
|   | (and aquatic environment) is dependent on a number of factors,           |  |
|   | including relative toxicity of the chemical, relative mobility (as       |  |
|   | influenced by physicochemical properties), recommended application       |  |
|   | rates (quantity of use) and agricultural practices (correct use of       |  |
|   | nozzles).                                                                |  |
|   | As farmers almost always have a choice of different chemicals to target  |  |
|   | a specific pest on a specific crop, it is recommended that a manual      |  |
|   | providing guidelines on choosing agricultural chemicals that minimise    |  |
|   | effects in non-target environments (both human and ecological health)    |  |
|   | be produced                                                              |  |
|   | 245 Agricultural chemicals: The use of sentinel monitoring yielded       |  |
|   | valuable information towards the site-specific animal health             |  |
|   | assessment. The observations would suggest that further studies into     |  |
|   | human health with bromide as a key priority chemical are indicated       |  |
|   | 246 Agricultural chemicals: it is also acknowledged that a revision of   |  |
|   | the 1996 SA Water Quality Guidelines is underway with the irrigation     |  |
|   | volume being addressed first                                             |  |
|   | It is argued that both Domestic and Animal Watering sections also        |  |
|   | urgently require revision to align with risk-based approaches that are   |  |
|   | necessary to appropriately assess and manage the hazards and risks       |  |
|   | present                                                                  |  |
|   | 247 Agricultural chemicals: research should focus on the integration of  |  |
|   | these models into the risk assessment process conducted during the       |  |
|   | registration of pesticides. While the registration process considers the |  |
|   | toxicity of a pesticide, there are no exposure assessment procedures     |  |
|   | performed to assess the environmental fate and predicted environmental   |  |
|   | concentrations under S African conditions                                |  |
|   | 248 Agricultural chemicals: Given the relatively low ED risks            |  |
|   | associated with agricultural chemicals in this study, comparative        |  |
|   | studies comparing the ED effects associated with different crop types,   |  |
|   |                                                                          |  |

| land uses and other important point sources (eg, mining, industrial,<br>sewage effluent) are encouraged so as to provide improved perspective<br>of the relative importance of these different sources on ED effects             |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 249 CECS in waste water treated for direct potable reuse: human health risks                                                                                                                                                     |  |
| Bio-assays showed the improvements in wastewater quality following<br>treatment through the various treatment works, and the results showed<br>how these bio-assays are able to be used to monitor the water quality.            |  |
| Thus it is recommended that a battery of bio-assays representing<br>different trophic levels be included in a monitoring programme if direct<br>reuse of wastewater is known to occur either intentionally or<br>unintentionally |  |
| Different bio-assays can be selected as long as various activities are tested.,eg, different oestrogen mimicking assays and anti-androgenic activity may be included.                                                            |  |
| Findings from health risk assessment studies revealed the need to manage two risks:                                                                                                                                              |  |
| 1 the constant presence of EE2 in the final effluent                                                                                                                                                                             |  |
| The risk of children swimming in the brine channel and ingesting the contaminant EE2, has risk priority number 144 and is located in the unacceptable area of the risk matrix.                                                   |  |
| As water reclamation processes were found not to treat the water to a satisfying level with respect to EE2, countermeasures were recommended                                                                                     |  |
| Electrochemical removal could be a good option in a pilot project for<br>the plant in the future, but more research needs to be completed for an<br>appropriate design and implementation of this process                        |  |
| Ozonation and GAC are therefore the technologies chosen as countermeasures due to the reasons stated above.                                                                                                                      |  |

| 2 In addition, building a wall was suggested to constrain unauthorized   |  |
|--------------------------------------------------------------------------|--|
| <br>people from reaching the brine channel                               |  |
| A fence has earlier been built and rebuilt several times around the area |  |
| but has been stolen and is therefore not a good option to prevent        |  |
| children from the community to enter.                                    |  |
| A wall was previously built around the drinking water treatment plant    |  |
| in the town and has been effective according to the superintendent.      |  |
| 250 Urban wastewater epidemiology: need to broaden our                   |  |
| understanding on CEC presence, fate, risk:                               |  |
| Metabolites (fate and risk), partitioning                                |  |
| Range of lethal/sub-lethal risk parameters (PNECs)                       |  |
| Minimum therapeutic doses and ADIs                                       |  |
| Drinking Water Equivalent Levels (DWEL ADI)                              |  |
| 251 Microplastic pollution: The potential health impacts of individual   |  |
| compounds or mixtures are also mostly unknown                            |  |
| 252 Microplastic pollution: The full impact and risks of microplastics   |  |
| pollution in water is yet to be discovered                               |  |
| 253 Microplastic pollution: Given the low dilution potential of local    |  |
| freshwater resources, coupled with ongoing waste management              |  |
| problems, the impacts of microplastics on local freshwaters resources    |  |
| and the biological processes dependent on it remains unclear             |  |
| 254 Microplastic pollution: The links between pollutants in              |  |
| microplastics and potentially more vulnerable rural populations need to  |  |
| be examined.                                                             |  |
| Although the full impact of microplastics on the environment and biota   |  |
| is not yet understood, the potential threats should not be taken lightly |  |
| 255 Microplastic pollution: the risks posed by microplastics must be     |  |
| tackled on various levels                                                |  |
| Currently most plans and interventions focus on end-of-pipe solutions    |  |
| contently more plans and meet tentions focus on end of pipe solutions    |  |

|   |                        | 256 Urban wastewaste epidemiology: Gaps in knowledge, research,        |         |
|---|------------------------|------------------------------------------------------------------------|---------|
|   |                        | policy:                                                                |         |
|   |                        | Early warning showing public health concerns is a gap                  |         |
|   |                        | 257 Use environmentally relevant concentrations in microplastics       |         |
|   |                        | exposure studies                                                       |         |
|   |                        | 258 Microplastics: to conduct ecotoxicity test to examine effect of    |         |
|   |                        | different major plastic types, sizes, and shapes in SA on Zebra fish   |         |
|   |                        | Danio rerio, shrimps caridina nilotica and freshwater snails ,         |         |
|   |                        | Melanoides tuberculate and Algae                                       |         |
|   |                        | 259 Microplastics: to conduct ecotoxicity test to assess effect of     |         |
|   |                        | selected plasticizers on different aquatic organisms                   |         |
|   |                        | 260 Microplastics: to develop methods for toxicity testing to study    |         |
|   |                        | microplastics in South African freshwater systems                      |         |
|   |                        |                                                                        |         |
| 2 | Analysis/Tests/Methods | 1 Analysis - methods for enantiomers                                   | 118     |
|   |                        |                                                                        | (9.8 %) |
|   |                        |                                                                        | [2]     |
|   |                        | 2 Analysis/ methods - Speed of analysis                                |         |
|   |                        | 3 Analysis/ methods – non-targeted screening                           |         |
|   |                        | 4 Analysis/ methods – retrospective analysis                           |         |
|   |                        | 5 Analysis/ methods – optimization                                     |         |
|   |                        | 6 Analysis/ methods- Need for metabolomics                             |         |
|   |                        | 7 Measurement in biosolids and amended soils                           |         |
|   |                        | 8 Analysis/methods – need for untargeted screening                     |         |
|   |                        | 9 Analysis/methods – need for unknown screening                        |         |
|   |                        | 10 Analytical/method - sensitivity                                     |         |
|   |                        | 11 Analysis/test methods - quantification of contaminants              |         |
|   |                        | 12 Analysis/test methods - use of internal and surrogate standards for |         |
|   |                        | quality control                                                        |         |

| 13 Analysis/test methods - retention time index (RTI) with alkane        |  |
|--------------------------------------------------------------------------|--|
| mixtures                                                                 |  |
| 14 Analysis/methods - Better development of accurate sediment quality    |  |
| criteria                                                                 |  |
| 15 Analysis/methods - effective risk ecological assessment methods for   |  |
| this emerging class of insecticides (pyrethroids)                        |  |
| 16 Analysis/methods - bioavailability-based measurements for             |  |
| pyrethroids in field-collected sediments                                 |  |
| 17 Accurate measurements of the bioavailable fraction of pyrethroids     |  |
| in a sediment and quality effects data are needed to assure accurate     |  |
| sediment toxicity assessments.                                           |  |
| 18 Analysis/methods/accuracy                                             |  |
| 19 The concentrations of DEET reported in multiple studies should be     |  |
| considered carefully and critically according to the following:          |  |
| Type of analysis (gcms vs lcms), detection of DEET in lab blanks or      |  |
| field blanks, correction of DEET concentrations with a stable isotope,   |  |
| recovery of such stable isotope.                                         |  |
| 21 Analysis/methods - MS/MS instruments with higher sensitivity and      |  |
| appropriate methods are needed to quantify this "micro-pollutant" DCF.   |  |
| 22 Analytical test standardisation                                       |  |
| 23 Analtical: new approaches and methods to detect and quantify          |  |
| nanoplastics in the environment                                          |  |
| 24 Analytical/methods- using methods capable of detecting PFAS           |  |
| concentrations with LCMRLs at or below 1ng/L                             |  |
| 25 Ten analyses had concentrations in excess of 1/10 of their respective |  |
| Effective concentration suggesting more detailed characterisation of     |  |
| these analytes                                                           |  |
| 26 A lack of a systematic approach to the detection and quantification   |  |
| of pharmaceuticals has provided a fragmented literature of               |  |
| serendipitous approaches.                                                |  |

| 27 Occurrence: reliable measurement of trace levels of contaminants      |  |
|--------------------------------------------------------------------------|--|
| across different environmental compartments (water, sediment, biota -    |  |
| of which biota has been largely neglected).                              |  |
| 28 Advancements in mass spectrometric methods for imaging could be       |  |
| pursued to identify localisation of pharmaceuticals within an organism   |  |
| 29 Standardised analytical methods: where possible and adhere more       |  |
| strictly to method validation guidelines to ensure robust quantification |  |
| 30 Harmonisation of the available guidelines for method validation that  |  |
| exist would enable movement away from method performance towards         |  |
| method validation                                                        |  |
| 31 Guidelines for method validation using HRMS are also lacking          |  |
| 32 Focus more on untargeted, hyphenated HRMS analytical methods          |  |
| for screening purposes. Use of hrms would avoid biased pre-selection     |  |
| of contaminants.                                                         |  |
| 33 Identification                                                        |  |
| 34 Develop and validate new in silico approaches for mining of so        |  |
| called "big data" generated from untargeted methods                      |  |
| 35 Standardised analytical methods: where possible and adhere more       |  |
| strictly to method validation guidelines to ensure robust quantification |  |
| 36 The use of stringent qa/qc design and consistent field protocols and  |  |
| lab methods                                                              |  |
| 37 More effort is needed on validation and benchmarking, especially of   |  |
| newly developed technology such as smart-phone based methods, to         |  |
| avoid false negative results and ensure that methods fit for purpose.    |  |
| 38 LODs are not always monitored in real food matrices and thus          |  |
| potential matrix effects are not always considered                       |  |
| 39 Instrumental reference methods are essential to verify the presence   |  |
| of an analyte at the level of interest                                   |  |
| 40 Insufficient method validation and the absence of benchmarking        |  |
| towards instrumental methods was noticed                                 |  |
| towards instrumental methods was noticed                                 |  |

| 41 The emergence of smartphone-based methods                              |  |
|---------------------------------------------------------------------------|--|
| 42 Instrumental methods: confirmatory analysis plays a key role in food   |  |
| chain sustainability. The long and complicated sample preparation         |  |
| remains a challenge that has to be faced in the future.                   |  |
| 43 Increasing focus on green chemistry                                    |  |
| 44 More effort has to be paid on the development of screening methods     |  |
| either aimed to reduce the number of samples being analyses by            |  |
| instrumental methods or the use of non-destructive methods of             |  |
| enhanced analysis                                                         |  |
| 45 Validation and benchmarking issues have to be considered carefully     |  |
| to ensure methods do not provide false-negative resultS and are fit for   |  |
| purpose                                                                   |  |
| 46 The constant need for revaluation of the available regulations in line |  |
| with recent advances in methods developmentThe application of the         |  |
| legal requirements is partially reflected in the reviewed methods,        |  |
| showing that there is still space for improvement                         |  |
| 47 The WFD biota EQSs are generally not adapted for mussels.              |  |
| 48 The need for critical attention amog environmental researchers on      |  |
| key aspects of study quality.                                             |  |
| 49 There are several key advantages to using sediment or biota as         |  |
|                                                                           |  |
| monitoring matrices as alternatives to water samples;                     |  |
| 50 Increased application of Mytilus spp. As sentinels for chemical        |  |
| status assessments in coastal waters may seem more appropriate.           |  |
| 51 To further clarify and minimise the influence of confounding non-      |  |
| target factors in mussel monitoring, e.g., by adopting international      |  |
| harmonisation and standardization of study conditions and program         |  |
| designs.                                                                  |  |
| 52 Developed methods exhibit drawbacks in terms of                        |  |
| accuracy/reliability in quantitative analysis of algal toxins in          |  |

| environmental water samples since earlier methods are based on            |  |
|---------------------------------------------------------------------------|--|
| external calibration approach.                                            |  |
| **                                                                        |  |
| 53 Losses of algal toxins during the analytical process and matrix        |  |
| effects in UHPLC-MSMS analyses                                            |  |
| 54 Aquatic biota samples: emphasis on fat removal -It is necessary to     |  |
| improve fat removal methods; they should be able to remove all, or        |  |
| almost all, of the fatthy content, without interfering with the compounds |  |
| <br>recoveries. It should be easy, fast and cheap.                        |  |
| 55 Aquatic biota samples: the development of multi-residue vs specific    |  |
| contaminants-Research is needed to find new methods, capable of           |  |
| extracting as many compounds as of as many classes as possible in the     |  |
| same process                                                              |  |
| 56 Aquatic biota samples: the implementation of a standardised            |  |
| nomenclature. The standardisation could help information exchange in      |  |
| the scientific community and would help scientific dissemination.         |  |
| 57 Aquatic biota samples: Moreover, information on sAmple weight,         |  |
| LODs, LOQs, and recoveries is very valuable and should be provided.       |  |
| 58 Anti TB drugs: Complexity of matrices in which these compounds         |  |
| are disposed and the complex nature of some of the compounds              |  |
| themselves as well as their high polarity and thermal liability adds to   |  |
| the challenges of analyzing them in the environment                       |  |
| 59 In addition to the scarcity of commercially available standards for    |  |
| ARVD metabolites, complicated method development for target               |  |
| analytes of diverse physico-chemical properties likely contributes to the |  |
| limited data                                                              |  |
| 60 Useful EP degradation and stability studies thoughout the sample       |  |
| collection and extraction stage were not carried out to determine         |  |
| stability of each compound during sample handling                         |  |
| stating of each compound during sample handning                           |  |

| 61 Development of methodology tailored for diverse emerging                 |  |
|-----------------------------------------------------------------------------|--|
| pollutants in water and sediments could assist to analyse a wider range     |  |
| of emerging pollutants such as acidic polar organic compounds               |  |
| 62 Enantioselectivity of chiral contaminants                                |  |
| 63 Development of enantioselective methods for profiling chiral APIs        |  |
| which can interact differently with biological organisms, exhibiting        |  |
| different pharmacokinetics is gaining interest in the scientific            |  |
| community and is recommended in future studies                              |  |
| 64 Rare earth elements (REEs: To better understand the environmental        |  |
| and human health risks associated with REEs, appropriate advanced           |  |
| analytical facilities, research funding and expertise are required, yet all |  |
| of these are currently lacking in most African countries                    |  |
| 65 European countries are lagging behind China and USA across all           |  |
| indices in the analysis of PBDEs                                            |  |
| 66 An expansion of measurements for chemicals of emerging concern           |  |
| needs to be addressed.                                                      |  |
| 67 RAbs: There is a need to incorporate more integrative                    |  |
| (multidisciplinary) approaches and state-of the art tools for appropriate   |  |
| detection and action                                                        |  |
| 68 Development of bio-indicators and local knowledge systems (ethno-        |  |
| medical geology) to identify specific TGCs.                                 |  |
| 69 Continuous monitoring should involve screening of matrices via           |  |
| targeted and non-targeted analyses for new and understudied POPs.           |  |
| This would reflect POP contaminants that humans and wildlife are            |  |
| exposed to. This gap could be addressed with a complementary                |  |
| non/semi-targeteed analytical approach that would aid in identification     |  |
| of unknown contaminants, and result in more robust risk assessments.        |  |
| Collection of data from wider range of analytes would be beneficial to      |  |
| help identify the main sources of POPs and establish their importance       |  |
| in different regions. Non-target analyses of archived sample extracts       |  |
| could be investigated to assess spatial and temporal trends in data<br>deficient areas |  |
|----------------------------------------------------------------------------------------|--|
|                                                                                        |  |
|                                                                                        |  |
| 70 SSRIs: It is important to note that fluoxetine, and potentially other               |  |
| SSRIs, exhibits appreciable binding (up to ~`50%) to suspended                         |  |
| particulates, yet analytical methods for SSRIs in the aquatic matrices                 |  |
| examined here commonly prefilter water samples to remove these                         |  |
| particles prior to extraction, a practice that likely has underestimated               |  |
| surface water levels of SSRIs                                                          |  |
| 71 For researchers to provide more details of experimental protocols                   |  |
| and results                                                                            |  |
| as we learn more about the long-term ecotoxicological impacts of ECs                   |  |
| and their TPs in the environment, it is critical to synthesize key                     |  |
| information on validated analytical methods, sensitive test methods for                |  |
| ecological effects, occurrence data, treatment data, and environmental                 |  |
| fate data that will facilitate the development of potential regulations to             |  |
| reduce ECs in the environment                                                          |  |
| 72 Currently no single measure is able to describe the water quality for               |  |
| any one water body                                                                     |  |
| 73 Research to develop rapid in situ detection of 1,4-dioxane                          |  |
|                                                                                        |  |
| 74 Detection on-site and in real time is critical given the spatially                  |  |
| dispersed nature of private wells, the potential for changing water                    |  |
| supply characteristics.                                                                |  |
| 75 Research to improve detection capabilities will involve the                         |  |
| development of highly selective binding and sensing components and                     |  |
| will require field testing under various scenarios.                                    |  |
| 76 Even for mercury, a recent study has indicated that still several                   |  |
| knowledge gaps existed related to variation within feather parts, among                |  |
| feather types and between feathers of the same type                                    |  |
| 77 NOM: alternatively, surrogate parameters such as DOC and TOC                        |  |
| can be monitored instead                                                               |  |

| 70 Agricultural chamicales of increasing chamicals have also been           |  |
|-----------------------------------------------------------------------------|--|
| 78 Agricultural chemicals: as inorganic chemicals have also been            |  |
| implicated in causing ED effects; it is important to include their analysis |  |
| to establish a bseline against which to interpret the hazards and risks     |  |
| posed by agricultural chemicals.                                            |  |
| Failure to include these, results in less confidence in interpreting both   |  |
| the bioassay results that may be obtained- and exposure assessments.        |  |
| Use of this water quality data is required in order to meaningfully         |  |
| interpret the context of hazards posed by organics and inorganics,          |  |
| without which a differential diagnosis may be difficult to reach.           |  |
| 79 PAH: It is strongly recommended that both parent and alkylated           |  |
| polycyclic aromatic hydrocarbons should be analysed, to facilitate          |  |
| source tracking                                                             |  |
| 80 PAH, PCB, OC pesticide: In context, all 209 possible congeners           |  |
| should be analysed.                                                         |  |
| however, for costs of analyses this study should concurrently evaluate      |  |
| the the efficacy of using ELISA tests as a rapid screening tool for PCBs    |  |
| in South Africa.                                                            |  |
| 81 PAH, PCB, OC pesticide: There is therefore, an urgent need to            |  |
| define baseline concentrations to toxicologically significant metals in S   |  |
| African freshwater ecosystems                                               |  |
| 82 PAH, PCB, OC pesticide; There is therefore a need for the                |  |
| development and validation of whole sediment toxicity testing               |  |
| procedures for freshwater and coastal ecosystems in S Africa, as a tool     |  |
| for determining whether contaminants in sediment are exerting a toxic       |  |
| effect on sediment-dwelling organisms.                                      |  |
| 83 Aquatic microbial diversity: it is now becoming known that               |  |
| numerical abundance of a particular species does not always directly        |  |
| correlate with metabolic activity or potential growth rate of that species  |  |
| concluse with metabolic activity of potential growth rate of that species   |  |

| A more accurate assessment of whether a bacterial taxon is actively<br>metabolizing can be achieved by quantifying the rRNA as opposed to                                                                                                                                               |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| the rDNA<br>84 Engineered nanomaterials: Environmental factors such as pH, ionic<br>strength, and temperature and retention times are relevant<br>environmental factors that require monitoring in the event of accidental                                                              |  |
| release of ENMs to establish expected impacts and potential mitigation measures.                                                                                                                                                                                                        |  |
| 85 Brominated flame retardants: Chemical profile of water and<br>sediment samples with respect to trace metals should be carried out in<br>order to establish whether there is any relationship between the analytes<br>of interest and other contaminants                              |  |
| 86 Brominated flame retardants:The developed sample pre-<br>concentration extraction kit should be subjected to a mixture of other<br>emerging contaminants to test its ruggedness                                                                                                      |  |
| 87 Brominated flame retardants: Work should be done on the so called<br>"novel flame retardants" that are currently used to replace the legacy<br>flame retardants that have been reported in water systems in developed<br>countries, but not in any developing country                |  |
| 88 Brominated flame retardants: The use of separating funnel extraction<br>for the isolation of TBBPA derivative resulting from in situ<br>derivatization is recommended in order to obtain acceptable analytical<br>results                                                            |  |
| 89 Emerging organic pollutants: The metabolites of pesticides, PCBs, pharmaceuticals and personal care products, and musk ketones should also be analysed as most of these pollutants may be broken down into other compounds in the environment or as it passes through the human body |  |
| 90 Emerging and persistent contaminants/pathogens: systematic approach that simultaneously determines parent compounds, transformation products and degradation products is long overdue.                                                                                               |  |

| 91 Antibiotic resistant bacteria/arb and genes in drinking water: Rapid    |  |
|----------------------------------------------------------------------------|--|
| <br>elisas are sensitive and can detect very low antibiotic residues       |  |
| It is possible to conduct these at DWPFs as part of water safety planning  |  |
| (WSP), particularly where upstream land use involves the use of large      |  |
| quantities of antibiotics in human or animal medicine.                     |  |
| The cost for setting up the equipment and analysis is not prohibitively    |  |
| high                                                                       |  |
| It would allow for the quantification of antibiotic residues in water      |  |
| samples and provide trends over time                                       |  |
| 92 Fluorescent Sensors for screening ECP: a portable sensor should also    |  |
| be developed based on these sensor materials, to allow for on-site, real-  |  |
| time monitorigng of ECPs in surface waters                                 |  |
| A non-targeted screening method based on a mixture of different QDs        |  |
| should be investigated, as well as additional compound class type          |  |
| sensors, to enable early detection of overall change in water quality with |  |
| respect to ECPs                                                            |  |
| 93 Carbapenen-resistant bacteria: Designs of the published studies         |  |
| which deal with the presence of CRBP- in raw or treated wastewater         |  |
| were not quantitative.                                                     |  |
| 94 Carbapenem resistant bacteria: Therefore the findings of CRBP           |  |
| grown at 37°C may overestimate its significance in the natural             |  |
| environment as an anthropogenic reservoir of clinically important          |  |
| CRBP or reservoir of resistance genes which could be spread to             |  |
| autochthonous bacteria.                                                    |  |
| 95 Nonsteroidal anti-inflammatory drugs: The development of very           |  |
| sensitive analytical methodology for the study of NSAIDs in various        |  |
| sample matrices is required                                                |  |
| 96 Fluoride in water: The results of these previous studies have not been  |  |
| consistent in terms of characterizing the fluoride content of Namibias     |  |
| groundwater.                                                               |  |
|                                                                            |  |

| 97 Fluoride in drinking water: It is necessary to assess all water quality parameters, including nitrate and TDS, in relation to the population affected at both the national and sub-regional scales         98 Alkyl phenol ethoxylates (APEs): wastewater effluents were identified as a major source of APEs and their degradation by-products in the environment; thus, more studies should be undertaken to measure the levels of APEs at WWTP outfalls, and terrestrial environments close to agricultural, mining and chemical industries, as the concentration are expected to be highest there.         99 Alkyl phenol ethoxylates (APEs): as sewage is known to be released into wetlands and oceanic waters, studies of APE levels in these compartments inhabitants (birds, frogs, algae, daphnia, dolphins, etc) need to be undertaken in order to assess the impact of APEs on biodiversity of such bodies         100 Alkyl phenol ethoxylates (APEs): Indoor dust has been implicated as an important exposure route for other persistent organic pollutants, such as TBBPA and PCBs; an accurate assessment (occurrence and fate) of alkylphenol ethoxylates in the indoor environment is of major importance for developing countries as the use of these EDCs is suspected to be on the rise |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| affected at both the national and sub-regional scales         98 Alkyl phenol ethoxylates (APEs): wastewater effluents were identified as a major source of APEs and their degradation by-products in the environment; thus, more studies should be undertaken to measure the levels of APEs at WWTP outfalls, and terrestrial environments close to agricultural, mining and chemical industries, as the concentration are expected to be highest there.         99 Alkyl phenol ethoxylates (APEs): as sewage is known to be released into wetlands and oceanic waters, studies of APE levels in these compartments inhabitants (birds, frogs, algae, daphnia, dolphins, etc) need to be undertaken in order to assess the impact of APEs on biodiversity of such bodies         100 Alkyl phenol ethoxylates (APEs): Indoor dust has been implicated as an important exposure route for other persistent organic pollutants, such as TBBPA and PCBs; an accurate assessment (occurrence and fate) of alkylphenol ethoxylates in the indoor environment is of major importance for developing countries as the use of these EDCs is suspected to be on the rise                                                                                                                                                 |
| 98 Alkyl phenol ethoxylates (APEs): wastewater effluents were identified as a major source of APEs and their degradation by-products in the environment; thus, more studies should be undertaken to measure the levels of APEs at WWTP outfalls, and terrestrial environments close to agricultural, mining and chemical industries, as the concentration are expected to be highest there.         99 Alkyl phenol ethoxylates (APEs): as sewage is known to be released into wetlands and oceanic waters, studies of APE levels in these compartments inhabitants (birds, frogs, algae, daphnia, dolphins, etc) need to be undertaken in order to assess the impact of APEs on biodiversity of such bodies         100 Alkyl phenol ethoxylates (APEs): Indoor dust has been implicated as an important exposure route for other persistent organic pollutants, such as TBBPA and PCBs; an accurate assessment (occurrence and fate) of alkylphenol ethoxylates in the indoor environment is of major importance for developing countries as the use of these EDCs is suspected to be on the rise                                                                                                                                                                                                               |
| identified as a major source of APEs and their degradation by-products<br>in the environment; thus, more studies should be undertaken to measure<br>the levels of APEs at WWTP outfalls, and terrestrial environments<br>close to agricultural, mining and chemical industries, as the<br>concentration are expected to be highest there.99 Alkyl phenol ethoxylates (APEs): as sewage is known to be released<br>into wetlands and oceanic waters, studies of APE levels in these<br>compartments inhabitants (birds, frogs, algae, daphnia, dolphins, etc)<br>need to be undertaken in order to assess the impact of APEs on<br>biodiversity of such bodies100 Alkyl phenol ethoxylates (APEs): Indoor dust has been implicated<br>as an important exposure route for other persistent organic pollutants,<br>such as TBBPA and PCBs; an accurate assessment (occurrence and<br>fate) of alkylphenol ethoxylates in the indoor environment is of major<br>importance for developing countries as the use of these EDCs is<br>suspected to be on the rise                                                                                                                                                                                                                                                        |
| identified as a major source of APEs and their degradation by-products<br>in the environment; thus, more studies should be undertaken to measure<br>the levels of APEs at WWTP outfalls, and terrestrial environments<br>close to agricultural, mining and chemical industries, as the<br>concentration are expected to be highest there.99 Alkyl phenol ethoxylates (APEs): as sewage is known to be released<br>into wetlands and oceanic waters, studies of APE levels in these<br>compartments inhabitants (birds, frogs, algae, daphnia, dolphins, etc)<br>need to be undertaken in order to assess the impact of APEs on<br>biodiversity of such bodies100 Alkyl phenol ethoxylates (APEs): Indoor dust has been implicated<br>as an important exposure route for other persistent organic pollutants,<br>such as TBBPA and PCBs; an accurate assessment (occurrence and<br>fate) of alkylphenol ethoxylates in the indoor environment is of major<br>importance for developing countries as the use of these EDCs is<br>suspected to be on the rise                                                                                                                                                                                                                                                        |
| <ul> <li>in the environment; thus, more studies should be undertaken to measure the levels of APEs at WWTP outfalls, and terrestrial environments close to agricultural, mining and chemical industries, as the concentration are expected to be highest there.</li> <li>99 Alkyl phenol ethoxylates (APEs): as sewage is known to be released into wetlands and oceanic waters, studies of APE levels in these compartments inhabitants (birds, frogs, algae, daphnia, dolphins, etc) need to be undertaken in order to assess the impact of APEs on biodiversity of such bodies</li> <li>100 Alkyl phenol ethoxylates (APEs): Indoor dust has been implicated as an important exposure route for other persistent organic pollutants, such as TBBPA and PCBs; an accurate assessment (occurrence and fate) of alkylphenol ethoxylates in the indoor environment is of major importance for developing countries as the use of these EDCs is suspected to be on the rise</li> </ul>                                                                                                                                                                                                                                                                                                                              |
| close to agricultural, mining and chemical industries, as the concentration are expected to be highest there.         99 Alkyl phenol ethoxylates (APEs): as sewage is known to be released into wetlands and oceanic waters, studies of APE levels in these compartments inhabitants (birds, frogs, algae, daphnia, dolphins, etc) need to be undertaken in order to assess the impact of APEs on biodiversity of such bodies         100 Alkyl phenol ethoxylates (APEs): Indoor dust has been implicated as an important exposure route for other persistent organic pollutants, such as TBBPA and PCBs; an accurate assessment (occurrence and fate) of alkylphenol ethoxylates in the indoor environment is of major importance for developing countries as the use of these EDCs is suspected to be on the rise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| close to agricultural, mining and chemical industries, as the concentration are expected to be highest there.         99 Alkyl phenol ethoxylates (APEs): as sewage is known to be released into wetlands and oceanic waters, studies of APE levels in these compartments inhabitants (birds, frogs, algae, daphnia, dolphins, etc) need to be undertaken in order to assess the impact of APEs on biodiversity of such bodies         100 Alkyl phenol ethoxylates (APEs): Indoor dust has been implicated as an important exposure route for other persistent organic pollutants, such as TBBPA and PCBs; an accurate assessment (occurrence and fate) of alkylphenol ethoxylates in the indoor environment is of major importance for developing countries as the use of these EDCs is suspected to be on the rise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| concentration are expected to be highest there.         99 Alkyl phenol ethoxylates (APEs): as sewage is known to be released<br>into wetlands and oceanic waters, studies of APE levels in these<br>compartments inhabitants (birds, frogs, algae, daphnia, dolphins, etc)<br>need to be undertaken in order to assess the impact of APEs on<br>biodiversity of such bodies         100 Alkyl phenol ethoxylates (APEs): Indoor dust has been implicated<br>as an important exposure route for other persistent organic pollutants,<br>such as TBBPA and PCBs; an accurate assessment (occurrence and<br>fate) of alkylphenol ethoxylates in the indoor environment is of major<br>importance for developing countries as the use of these EDCs is<br>suspected to be on the rise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 99 Alkyl phenol ethoxylates (APEs): as sewage is known to be released into wetlands and oceanic waters, studies of APE levels in these compartments inhabitants (birds, frogs, algae, daphnia, dolphins, etc) need to be undertaken in order to assess the impact of APEs on biodiversity of such bodies         100 Alkyl phenol ethoxylates (APEs): Indoor dust has been implicated as an important exposure route for other persistent organic pollutants, such as TBBPA and PCBs; an accurate assessment (occurrence and fate) of alkylphenol ethoxylates in the indoor environment is of major importance for developing countries as the use of these EDCs is suspected to be on the rise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| into wetlands and oceanic waters, studies of APE levels in these compartments inhabitants (birds, frogs, algae, daphnia, dolphins, etc) need to be undertaken in order to assess the impact of APEs on biodiversity of such bodies         100 Alkyl phenol ethoxylates (APEs): Indoor dust has been implicated as an important exposure route for other persistent organic pollutants, such as TBBPA and PCBs; an accurate assessment (occurrence and fate) of alkylphenol ethoxylates in the indoor environment is of major importance for developing countries as the use of these EDCs is suspected to be on the rise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| compartments inhabitants (birds, frogs, algae, daphnia, dolphins, etc)         need to be undertaken in order to assess the impact of APEs on         biodiversity of such bodies         100 Alkyl phenol ethoxylates (APEs): Indoor dust has been implicated         as an important exposure route for other persistent organic pollutants,         such as TBBPA and PCBs; an accurate assessment (occurrence and         fate) of alkylphenol ethoxylates in the indoor environment is of major         importance for developing countries as the use of these EDCs is         suspected to be on the rise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| need to be undertaken in order to assess the impact of APEs on biodiversity of such bodies         100 Alkyl phenol ethoxylates (APEs): Indoor dust has been implicated as an important exposure route for other persistent organic pollutants, such as TBBPA and PCBs; an accurate assessment (occurrence and fate) of alkylphenol ethoxylates in the indoor environment is of major importance for developing countries as the use of these EDCs is suspected to be on the rise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| biodiversity of such bodies       biodiversity of such bodies         100 Alkyl phenol ethoxylates (APEs): Indoor dust has been implicated as an important exposure route for other persistent organic pollutants, such as TBBPA and PCBs; an accurate assessment (occurrence and fate) of alkylphenol ethoxylates in the indoor environment is of major importance for developing countries as the use of these EDCs is suspected to be on the rise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100 Alkyl phenol ethoxylates (APEs): Indoor dust has been implicated<br>as an important exposure route for other persistent organic pollutants,<br>such as TBBPA and PCBs; an accurate assessment (occurrence and<br>fate) of alkylphenol ethoxylates in the indoor environment is of major<br>importance for developing countries as the use of these EDCs is<br>suspected to be on the rise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| as an important exposure route for other persistent organic pollutants,<br>such as TBBPA and PCBs; an accurate assessment (occurrence and<br>fate) of alkylphenol ethoxylates in the indoor environment is of major<br>importance for developing countries as the use of these EDCs is<br>suspected to be on the rise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| such as TBBPA and PCBs; an accurate assessment (occurrence and fate) of alkylphenol ethoxylates in the indoor environment is of major importance for developing countries as the use of these EDCs is suspected to be on the rise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| fate) of alkylphenol ethoxylates in the indoor environment is of major<br>importance for developing countries as the use of these EDCs is<br>suspected to be on the rise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| importance for developing countries as the use of these EDCs is<br>suspected to be on the rise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| suspected to be on the rise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| studies have been carried out on the qualitative and quantitative analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| of pesticides in this river.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 102 CECs in recycling/re-use: combined effects and concentrations are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| mostly unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 103 CECs in recycling/re-use: could not test for transformed secondary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| by-products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 104 CECS in recycling/re-use: carefully test drinking water from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| seawater desalination plants or reused sewage water for toxicity, which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| need not be costly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 105 Microplastics: to conduct ecotoxicity test to examine effect of    |  |
|------------------------------------------------------------------------|--|
| different major plastic types, sizes, and shapes in SA on Zebra fish   |  |
| Danio rerio, shrimps caridina nilotica and freshwater snails ,         |  |
| Melanoides tuberculate and Algae                                       |  |
| 106 Microplastics: to conduct ecotoxicity test to assess effect of     |  |
| selected plasticizers on different aquatic organisms                   |  |
| 107 Microplastics: to develop methods for toxicity testing to study    |  |
| microplastics in South African freshwater systems                      |  |
| 108 Microplastics: method to get microplastics in solution             |  |
| 109 Microplastics and pharmaceuticals as drivers of antimicrobial      |  |
| resistance: polymer compositions of microplastics                      |  |
| 110 Microplastics and pharmaceuticals as drivers of antimicrobial      |  |
| resistance: POPS (including DDT and PFAS), metals, and other           |  |
| chemicals in plastics and microplastics                                |  |
| 111 Polycyclic aromatic hydrocarbons (PAHs) in aquatic ecosystems:     |  |
| The chemical analysis of the metabolized PAHs would complete the       |  |
| picture of what is happening to the parent PAHs after entering the     |  |
| animals bodies.                                                        |  |
| This would necessitate more funding because these analytical standards |  |
| are expensive and not always readily available in SA. Each of the 16   |  |
| parent PAHs has more than 2 metabolites that could be quantified       |  |
| chemically increasing the analytical load and associated expenses      |  |
| 112 Polycyclic aromatic hydrocarbons (PAHs) in aquatic ecosystems:     |  |
| The biomarker response results could not conclusively be attributed to |  |
| PAHs, and therefore a broad spectrum screening for a much larger       |  |
| variety of organic chemical pollutants is advised for this densely     |  |
|                                                                        |  |
| populated area of Gauteng.                                             |  |
| Chemical compounds that can be considered include: polychlorinated     |  |
| biphenyls, brominated flame retardants, organochlorine pesticides,     |  |

| plasticisers, pharmaceuticals and personal care products and perfluorinated compounds, just to name a few compound classes |  |
|----------------------------------------------------------------------------------------------------------------------------|--|
| 113 Agricultural chemicals: While the analytical approach adopted in                                                       |  |
| this study catered for a large number of different pesticides, it is                                                       |  |
| important to note that glyphosate (most heavily applied pesticide in the                                                   |  |
| country) was not included in screening or quantitative analysis.                                                           |  |
| Considering its high quantity of use as well as increasing evidence of                                                     |  |
| human health-related effects, future research should focus on                                                              |  |
| developing analytical methods for detection of this pesticide (and its                                                     |  |
| breakdown products) in water resources in S Africa                                                                         |  |
| 114 Urban wastewater epidemiology: compare sampling, detection,                                                            |  |
| monitoring methods:                                                                                                        |  |
| Mass loading                                                                                                               |  |
| Composite sampling vs grab sampling                                                                                        |  |
| ISTD addition                                                                                                              |  |
| 115 Microplastic pollution: due to lack of standardized units to report                                                    |  |
| the concentration of microplastics in the environment, it is at this stage                                                 |  |
| difficult to compare results                                                                                               |  |
| 116 Drug-resistant microorganisms: Methods to be established in this                                                       |  |
| study will be a vital contribution towards the surveillance of                                                             |  |
| antimicrobial resistance activities in the water sector and possible                                                       |  |
| alignment with existing activities in the health sector                                                                    |  |
| 117 Antimicrobials/antibiotic resistant bacteria: sufficient repeats be                                                    |  |
| conducted so that statistical analyses could be done to investigate the                                                    |  |
| relationship between ARB, antimicrobials, agrochemicals and physico-                                                       |  |
| chemical parameters                                                                                                        |  |
| 118 To broaden the suite of contaminants tested                                                                            |  |
|                                                                                                                            |  |

| 3 | Studies/Research | 1 Restrictions on environmental releases and continued monitoring are      | 118    |
|---|------------------|----------------------------------------------------------------------------|--------|
|   |                  | still essential in China, where studies on BFRs, especially non-PBDEs      | (9.8%) |
|   |                  | BFRs, remain limited relative to its important role in the BFR market      | [2]    |
|   |                  | 2 Bulk of studies documenting args in aquatic systems are focused on       |        |
|   |                  | antibiotics, while those on antivirals, antifungal, antimalarials, and     |        |
|   |                  | antihelminthics are rare                                                   |        |
|   |                  | 3 Research covering a broad spectrum of args is urgently needed in         |        |
|   |                  | most developing countries. Yet such research is limited by lack of         |        |
|   |                  | funding, expertise and research facilities                                 |        |
|   |                  | 4 In light of the entire Africa continent, the inadequacy in reported      |        |
|   |                  | blooms and advances in this area of research require critical              |        |
|   |                  | intervention and action                                                    |        |
|   |                  | 5 In African countries, the issue of toxic blooms is a compounding one     |        |
|   |                  | in addition to existing water issues and challenges. It is not surprising, |        |
|   |                  | therefore that there is a lag in research in this area                     |        |
|   |                  | 6 The systematic assessment of all the processes linked to                 |        |
|   |                  | eutrophication in order to have a practical solution                       |        |
|   |                  | 7 Research in Africa has been geared more towards reports and              |        |
|   |                  | investigations of toxicity in the area of blooms – more work needs to be   |        |
|   |                  | done                                                                       |        |
|   |                  | 8 In light of Africa's unique vulnerability to climate change, as opposed  |        |
|   |                  | to other continents, knowledge dissemination and collective research is    |        |
|   |                  | critical                                                                   |        |
|   |                  | 9 The establishment of more collaborative research not only on an          |        |
|   |                  | intercontinental scale but knowledge sharing within the continent,         |        |
|   |                  | particularly in the central countries                                      |        |
|   |                  | 10 The spillover (transmission modes) of bat viruses is still something    |        |
|   |                  | of a black box, that is scarcely understood, and much more research is     |        |
|   |                  | needed to expand our understanding of the spillover events.                |        |

| The role of bats in transmission of these infectious diseases needs to be<br>further investigated because of lack of direct experimental data on<br>transmission of viruses from bats to intermediate animal hosts    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 11 Further research and clarification, such as for substances whose<br>mode of uptake and accumulation deviate from general partitioning and<br>when there could be a concentration dependency of the uptake (eg, for |  |
| PFCs)                                                                                                                                                                                                                 |  |
| 12 More attention needs to be paid to the emerging pollutants by conducting systematic studies reporting the concentrations needed for the environmental risk assessment of emerging pollutants.                      |  |
| 13 Limited studies on flows of TCC and TCS in many developing countries such as those in Africa, Asia and South America                                                                                               |  |
| 14 Research on REEs in developing regions, including Africa is needed, given prevailing conditions predisposing humans to health risks, e.g., untreated drinking water                                                |  |
| 15 Future studies will benefit from these inclusion of these newly identified PFAAs                                                                                                                                   |  |
| 16 Studies undertaken in Ghana over past 17 yr have reported POP concentrations in a wide variety of matrices; however, these have been on local POP distributions.                                                   |  |
| 17 Most of the available studies regarding microplastics effects were<br>conducted under laboratory conditions, which may be less relevant to<br>the realistic environment                                            |  |
| 18 Perform more studies to reveal the effects of microplastics on aquatic primary producers and influencing factors                                                                                                   |  |
| 19 Conduct further studies on the factors that affect the selectivity of aquatic organisms for microplastics and the toxicity and fate of ingested microplastics in aquatic organisms                                 |  |
| 20 SSRIs: In fact it appears critical that more research be focused on areas that will be experiencing the largest increases in population                                                                            |  |

| 1                                                                                                                                            |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| growth and concentration of these populations in cities over the coming<br>years, particularly where wastewater treatment infrastructure and |  |
| environmental management systems are limited.                                                                                                |  |
| 21 SSRI: Similar mechanistic partitioning and toxicity work has not                                                                          |  |
| been done with citalopram and paroxetine indicating an area of                                                                               |  |
| imperative research need because citalopram was one of the most                                                                              |  |
| frequently detected SSRIs and paroxetine was predicted to exceed the                                                                         |  |
| THV (Cmin) almost half of the time in influent detections.                                                                                   |  |
| 22 To develop a strong research base for future quantitative reviews                                                                         |  |
| 23 To better study and thus understand the effects of multiple stressors                                                                     |  |
| 24 With increasing number of studies detecting pharmaceuticals in                                                                            |  |
| groundwater bodies, the question concerning antibiotic resistance and                                                                        |  |
| proliferation of compounds in the aqueous environment should concern                                                                         |  |
| us                                                                                                                                           |  |
| 25 Pharmaceuticals: further studies are needed concerning the                                                                                |  |
| consequences of these compounds, both in their individual                                                                                    |  |
| concentrations and as cocktails, in the groundwater environment                                                                              |  |
| 26 Future studies are needed to illicit the impact of products used in                                                                       |  |
| emerging technologies in a more comprehensive way                                                                                            |  |
| 27 Low number of studies in the soil, groundwater, coastal areas and                                                                         |  |
| within biota tissues.                                                                                                                        |  |
| Studies regarding contamination of the benthic community or biofilms                                                                         |  |
| were not found in this research, even though these organisms play a                                                                          |  |
| very important role in energy and food cycle                                                                                                 |  |
| 28 The low number of studies regarding antibiotic resistance is also                                                                         |  |
| concerning, once the spread of antibiotic –resistant bacteria could be a                                                                     |  |
| big threat to human health in the next years                                                                                                 |  |
| 29 The risk assessment was based on EQS and PNEC values, available                                                                           |  |
| in literature for less than a third of the investigated compounds.                                                                           |  |

| 1 · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| These ecotoxicology thresholds can be determined by in-silico<br>approaches using large uncertainty factors, and undergo regular<br>revisions accounting for new scientific evidences, which can drastically<br>change the HQ determined here.                                    |  |
| Future research should focus on the refinement of these thresholds, especially in the context of complex mixtures.                                                                                                                                                                |  |
| 30 Research should be focused on the development of hybrid systems<br>for degradation and removal of these contaminants from municipal<br>wastewaters                                                                                                                             |  |
| 31 Very few studies have quantified the potential of EC sorption to algal biomass                                                                                                                                                                                                 |  |
| 32 PFOS in fish: thus there is a need to conduct more studies on fish in<br>areas that are fished by recreational and subsistence consumers,<br>screening level risk assessments with further studies on contaminant<br>sources and mitigation measures for a cleaner environment |  |
| 33 Clearly, more research is needed to investigate whether feathers can<br>be useful to monitor the internal concentrations of other classes of<br>contaminants                                                                                                                   |  |
| 34 Metal elements: compared with Sr in egg contents, both species had<br>concentrations in their eggshells an order of magnitude higher. Further,<br>the mean Sr concentrations in the leatherback eggshells were more than<br>double the mean in loggerhead shells.              |  |
| Authors could not explain this discrepancy. Further work is needed in this regard                                                                                                                                                                                                 |  |
| 35 Mercury concentrations in the wild crocodile egg contents from<br>KNP were slightly higher than from elsewhere., but remarkably lower<br>in eggshells from most other sites                                                                                                    |  |
| The maximum concentration in a wild egg did not reach TRV 2mg/kg dm. There remains a well justified concern and further investigation is warranted                                                                                                                                |  |

| 36 Other interesting perspectives would include further work on            |  |
|----------------------------------------------------------------------------|--|
| environmental matrices (e.g., speciation of metals in water) and on        |  |
| lower trophic level organisms in the different areas, to thoroughly        |  |
| understand the processes of metal transfer leading to the differences      |  |
| observed in top predators                                                  |  |
| 37 In the future, studies on POPs in the sediment of this river should     |  |
| focus on their distribution according to particle sizes of the sediment    |  |
| and comparison of depth and surface sediment concentrations                |  |
| 38 PCBs in water: further studies are recommended in order to make a       |  |
| definitive conclusion                                                      |  |
| 39 Flame retardants: Taking into account the high levels of these          |  |
|                                                                            |  |
| pollutants in WWTW effluents, long-term                                    |  |
| exposure and bioaccumulation of these OPFRs and other emerging             |  |
| flame retardants in the aquatic environment, indicates that further        |  |
| studies are needed to define the environmental risk produced by these      |  |
| pollutants                                                                 |  |
| 40 Pesticides: clearly, pesticides as potential endocrine disruptors needs |  |
| more research specifically focused on understanding the details of         |  |
| interaction with the diversity of factors presented by the endocrine       |  |
| system. Although herbicides as a subgrouping stand out ad being            |  |
| understudied, both fungicides and insecticides need more attention in      |  |
| SA                                                                         |  |
| 41 Pesticides: Biomarkers representing a larger part of the endocrine      |  |
| response system should be studied and validated. In particular,            |  |
| molecular (gene expression) biomarkers should be used more widely          |  |
| since this sensitive response system could be used following brief         |  |
| exposure experiments                                                       |  |
| 42 Fungicides: Fungicides, on the other hand, were mostly associated       |  |
| with anti-androgenic activity, either by inhibiting binding of male        |  |
| hormone to its receptor (AR) or by inhibiting the activity of the enzyme   |  |
| 5-alpha-reductase.                                                         |  |
|                                                                            |  |

| The role of fungicides as disruptors in the female reproductive system,  |  |
|--------------------------------------------------------------------------|--|
| especially as aromatase enzyme inhibitors needs more study               |  |
| 43 Pesticides: Research regarding potentially affected wildlife          |  |
| populations needs more studies.                                          |  |
| 44 Agricultural chemicals: samples collected in the Vals and Renoster    |  |
| rivers however showed comparatively higher values, with some             |  |
| samples exceeding 0.7 ng/L trigger value                                 |  |
| The frequent detection of atrazine, simazine, and terbuthylazine (all    |  |
| known EDCs) in combination with the observed ED bioassay responses       |  |
| highlights this geographical area as a priority for further research,    |  |
| where a more detailed survey of the contamination of human and           |  |
| livestock drinking water resources (surface and groundwater) and         |  |
| associated health risks is recommended.                                  |  |
| 45 Agricultural chemicals: in this respect a comparative study of the    |  |
| relative importance of different sources of EDCs in the environment is   |  |
| recommended to prioritise and focus future research initiatives in this  |  |
| field.                                                                   |  |
| 46 PCB, PAH, OC pesticide in sediment, biological tissue: findings of    |  |
| this study motivate for similar studies in other coastal cities.         |  |
| 47 PCB, PAH, OC pesticide in sediment, biological tissue: it is          |  |
| recommended that similar studies be performed in other cities along the  |  |
| South African coastline                                                  |  |
|                                                                          |  |
| 48 PCB, PAH, OC this study has highlighted the potential use of small,   |  |
| forage fish (specifically ambassids) as sentinels for contaminant        |  |
| monitoring in SA estuaries, based on the fact that they accumulated      |  |
| numerous contaminants in their tissue to high concentrations.            |  |
| It is recommended that a study that compares concentrations of           |  |
| chemicals in the tissues of ambassids and larger fish between putatively |  |
| contaminated and uncontaminated estuarine ecosystems in the              |  |
| eThekwini area of KZN be performed.,                                     |  |

|                                                                           | 1 |
|---------------------------------------------------------------------------|---|
| as a case study on the potential use of these fish as sentinels for       |   |
| contaminant monitoring.                                                   |   |
| 49 PCB, PAH, OC pesticide: The relationship between chemical              |   |
| concentrations in the tissue of ambassids and larger commonly             |   |
| consumed fish should be explored to determine whether concentrations      |   |
| in ambassids can be used to predict likely concentrations in larger,      |   |
| commonly consumed fish.                                                   |   |
| 50 17 beta-estradiol in wastewater: further work is required for actual   |   |
| development of device prototype                                           |   |
| 51 17 beta-estradiol in wastewater: further work is required to develop   |   |
| new aptameric biosensor for other e-EDCs including 17-alpha-              |   |
| ethinylestradiol/EE, estriol, and estrone, as well as combinatorial       |   |
| aptamer biosensor that will be used for the determination of the total e- |   |
| EDC content of a water sample.                                            |   |
| 52 BMAA - the insights gained into the possible regulatory function of    |   |
| BMAA in cyanobacteria require an urgent follow-up study to confirm        |   |
| the function of this molecule and thereby supply a fundamental            |   |
| physiological basis for any environmental parameter-based alert level     |   |
| framework                                                                 |   |
| It is recommended                                                         |   |
| a) That research into role of BMAA as a response regulator be             |   |
| completed so as to support environmentally-based models of BMAA           |   |
| presence and                                                              |   |
| a) That a long-term monitoring project be initiated to collect adequate   |   |
| data to support or refute the lab findings on physicochemical parameter-  |   |
| based prediction of BMAA levels in cyanobacterial blooms                  |   |
| The current findings, together with the recommended work, will            |   |
| provide a sound basis for an alert level framework for the analysis of    |   |
| BMAA in recreational and potable water resources                          |   |
| *                                                                         |   |

|                                                                            | ] |
|----------------------------------------------------------------------------|---|
| 53 Engineered nanomaterials: Future research studies should focus          |   |
| more on nanomaterials in the same state that they are likely to end up     |   |
| in aquatic systems                                                         |   |
| This should generate more reliable data that could support better models   |   |
| than those could be derived from the use of pristine or functionalized     |   |
| materials, such as nTiO2 particles currently used, some of which may       |   |
| not find their way into aquatic systems                                    |   |
| 54 Engineered nanomaterials: Further research should test the              |   |
| applicability of these models in predicting the behavior and toxicity of   |   |
| other nanomaterials to establish their suitability and hence applicability |   |
| in decision making for risk assessment that covers nanomaterials in        |   |
| general                                                                    |   |
| 55 EDCs: Research has focus mainly on oestrogenic activity, but it is      |   |
| clear that EDCs also affect other pathways, including the hypothalamic     |   |
| pituitary thyroid axis.                                                    |   |
| Studies have reported associations between exposure to thyroid             |   |
|                                                                            |   |
| disrupting chemicals and neurobehavioral disorders, obesity and            |   |
| reproductive abnormalities, among others                                   |   |
| 56 Emerging chemical pollutants: Enhanced selectivity via surface          |   |
| modification of the QDs should be investigated                             |   |
| 57 Further work is needed to optimize the immobilization of the            |   |
| nanomaterials to enable reuse                                              |   |
| 58 EDCs removal from wastewater: This study partially quantified the       |   |
| risks resulting from discharging EDCs into receiving water bodies          |   |
| As only a few EDCs were evaluated, there is a need to study additional     |   |
| groups of these compounds.                                                 |   |
| Thus, more in-depth studies are needed to gain better insight into the     |   |
| magnitude of the eco-toxicological effects on the environment and the      |   |
| potential risks to users of the discharged water and the disposed sludge   |   |
| from wastewater treatment plants.                                          |   |
|                                                                            |   |

| 59 Emerging and persistent contaminants/pathogens: available and emerging antibiotic-resistant genes in microbial communities present in |  |
|------------------------------------------------------------------------------------------------------------------------------------------|--|
| wastewater treatment plants should be investigated                                                                                       |  |
| 60 Emerging/persistent contaminants/pathogens: research should be                                                                        |  |
| promoted on new technologies for the removal of emerging                                                                                 |  |
| contaminants from wastewater                                                                                                             |  |
| 61 Antibiotic resistant bacteria and genes: The present study provided                                                                   |  |
| some data for examples of drinking water production systems typically                                                                    |  |
| in operation in South Africa.                                                                                                            |  |
| However, a coordinated study is needed to be baseline data for the                                                                       |  |
| various compartments of the environment in order to adequately link it                                                                   |  |
| with health                                                                                                                              |  |
| 62 arb and genes in drinking water: the data gathered in the present                                                                     |  |
| study showed that the underlying genetic elements that confer antibiotic                                                                 |  |
| resistance may potentially also lead to increased virulence.                                                                             |  |
| A further investigative study is thus necessary to examine the health-                                                                   |  |
| related impacts of the bacterial species that have been identified and                                                                   |  |
| their associated virulence studies                                                                                                       |  |
| 63 Fluorescent sensors for screening ECP in water: as a result of the                                                                    |  |
| positive outcomes of this project, further work on the optimization                                                                      |  |
| studies of the sensor materials is recommended, particularly with                                                                        |  |
| respect to testing therof for real water samples in which the presence of                                                                |  |
| the target ECPs has been confirmed by traditional (chromatographic-                                                                      |  |
| mass spectrometric) methods.                                                                                                             |  |
| 64 Test organisms for toxicity testing: This experiment platform                                                                         |  |
| provided a platform for future biological toxicology studies in SA as                                                                    |  |
| both displayed sensitivity to water quality and proved to be suitable                                                                    |  |
| organisms for the acute toxicity testing method                                                                                          |  |
| 65 PCBs: In SA, research concerning PCB contaminants in water and                                                                        |  |
| mussels is sparse.                                                                                                                       |  |

| 66 Trace elements: A health risk is also associated with the              |  |
|---------------------------------------------------------------------------|--|
| consumption of L capensis muscle tissue as As and Se recorded THQ         |  |
| values greater than 1.                                                    |  |
| This should be confirmed in follow-up surveys of the local population     |  |
| in the Vaal Dam area.                                                     |  |
| 67 PCB residues: While industries are a key component of the countrys     |  |
| economy, little research has been conducted on PCB contamination and      |  |
| no literature is available for PCB analysis in different organs of fish   |  |
| from the North End Lake                                                   |  |
| 68 Fluoride in water: While several studies have attempted to address     |  |
| the possible causes for fluoride accumulation in Namibia, no endeavor     |  |
| has been made to link elevated fluoride content in potable water to the   |  |
| population geographic distribution.                                       |  |
| 69 Fluoride in drinking water: We are not aware of a similar study in     |  |
| the sub-continent, particularly in neighbouring countries, where cross-   |  |
| border water management is essential, partly due to shared aquifers and   |  |
| transboundary perennial rivers                                            |  |
| 70 Alkyl phenol ethoxylates: wastewater effluents were identified as a    |  |
| major source of APEs and their degradation by-products in the             |  |
| environment; thus, more studies should be undertaken to measure the       |  |
| levels of APEs at WWTP outfalls, and terrestrial environments close to    |  |
|                                                                           |  |
| agricultural, mining and chemical industries, as the concentration are    |  |
| expected to be highest there.                                             |  |
| 71 Alkyl phenol ethoxylates: within effluent studies, as these pollutants |  |
| are directly linked to urbanization, the impact of population increase in |  |
| metropolitan areas need to be assessed for APEs pollution                 |  |
| 72 Alkyl phenol ethoxylates: as sewage is known to be released into       |  |
| wetlands and oceanic waters, studies of APE levels in these               |  |
| compartments inhabitants (birds, frogs, algae, daphnia, dolphins, etc)    |  |
| need to be undertaken in order to assess the impact of APEs on            |  |
| biodiversity of such bodies                                               |  |

| 73 Alkyl phenol ethoxylates: there is a paucity of data on the adverse<br>health impacts of NPE1-3. Hence studies should be undertaken to |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| establish the minimum health risk concentration for each isomer as well                                                                   |  |
| as to investigate the synergic health effect of a combination if different                                                                |  |
| environmentally relevant concentrations of APEs                                                                                           |  |
| 74 Alkyl phenol ethoxylates: there is a scarcity of data on human                                                                         |  |
| biological monitoring for APEs around the globe and more research                                                                         |  |
| also needs to be directed toward NPE isomer identification, as the                                                                        |  |
| available studies determined exposure to technical mixtures of OPs and                                                                    |  |
| NPs                                                                                                                                       |  |
| 75 Alkyl phenol ethoxylates: NPE(1-3) as emerging environmental                                                                           |  |
| contaminant should be studied systematically to evaluate their potential                                                                  |  |
| threat to environmental and human health. To accomplish this goal,                                                                        |  |
| research activities should look into, among others:                                                                                       |  |
| 1) developing analytical methods to measure these pollutants in a                                                                         |  |
| variety of matrices down to trace levels                                                                                                  |  |
| 2) fate and transport of NP and NPE(1-3) in air                                                                                           |  |
| 3) more toxicity data to assess the effects on terrestrial organisms such                                                                 |  |
| as plants                                                                                                                                 |  |
| 4) potential effects on wildlife due to long-term exposure to low concentrations of NP and NPEs                                           |  |
| 76 Pharmaceutical and personal care products: Several key points                                                                          |  |
| should receive priority in future studies to ensure sustainability of our                                                                 |  |
| freshwater resources, namely:                                                                                                             |  |
| 1 further reports on the occurrences of PPCPs and their metabolites in                                                                    |  |
| surface waters                                                                                                                            |  |
| 2 establishing the possible endocrine-disrupting effects of commonly-                                                                     |  |
| detected PPCPs and other micro-pollutants through a tiered eco-                                                                           |  |
| toxicological approach                                                                                                                    |  |
|                                                                                                                                           |  |

| 3 investigating the contribution of environmental micro-pollutants        |  |
|---------------------------------------------------------------------------|--|
| towards the global epidemic of AMR                                        |  |
| 4 report on the effectiveness of WWTPs to remove priority micro-          |  |
| pollutants, such as EDCs, as well as biological pathogens                 |  |
| 5 raising public awareness of the consequences of liberal and             |  |
| irresponsible PPCP use and disposal                                       |  |
| 6 establish and/or improve initiatives such as the National Toxicity      |  |
| Monitoring Programme (NTMP) to assist with environmental risk             |  |
| assessment through the use of AOP (adverse outcome pathway)               |  |
| networks                                                                  |  |
| 7 developing more effective water treatment technologies to eradicate     |  |
| persistent micro-pollutants from the water system in order to deem the    |  |
| system safe for reuse.                                                    |  |
| 77 BTEX in water: research trends indicate that there is still room for   |  |
| more studies to be conducted on the occurrence of BTEX compounds          |  |
| in various water systems, as well as to examine future treatment          |  |
| techniques that can help alleviate unpleasant health effects and possibly |  |
| reduce water-related deaths                                               |  |
| 78 Organochlorine pesticides: The uMngeni River: very limited studies     |  |
| have been carried out on the qualitative and quantitative analysis of     |  |
| pesticides in this river.                                                 |  |
| 79 Organochlorine pesticides: In the future, studies on POPs in the       |  |
| sediment of this river should focus on their distribution according to    |  |
| particle sizes of the sediment and comparison of depth and surface        |  |
| sediment concentrations                                                   |  |
| 80 Polycyclic aromatic hydrocarbons: Further studies can be done to       |  |
| pinpoint the sources, considering that Northern Works WWTP receives       |  |
| sewage mainly from domestic and food industries while Goudkoppies         |  |
| receives sewage mainly from the chemical industry                         |  |
| receives servage manny nom the enormour maustry                           |  |

| 81 Toxic elements: future study will focus on assessing the transfer of toxic elements to humans through food chain (sediment/water-plant-animal-human chain)         82 Toxic elements: toxicity study using a model organism such as zebra fish will assist monitoring the toxic effects of potentially toxic elements in reproductive and nervous systems of the organism.         83 Antimicrobials and antibiotic resistant bacteria: future research is conducted so that statistical analyses could be done to investigate the relationship between ARB, antiiotics and physico-chemical parameters         84 Antimicrobials and antibiotic resistant bacteria: the presence of antibiotic resistance genes/genetic materilas in the ARBs is investigated.         85Antimicrobials and antibiotic resistant bacteria: In addition, the presence of these antibiotic resistance genes/genetic materials in bulk water should also be investigated with a focus on the potential for transfer to susceptible bacteria         86 Microplastics: to conduct ecotoxicity test to examine effect of different major plastic types, sizes, and shapes in S Africa on Zebra fish Danio rerio, shrimps caridina nilotica and freshwater snails , Melanoides tuberculate and Algae         87 Microplastics: to conduct ecotoxicity test to assess effect of selected plasticizers to different aquatic organisms |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 82 Toxic elements: toxicity study using a model organism such as zebra fish will assist monitoring the toxic effects of potentially toxic elements in reproductive and nervous systems of the organism.         83 Antimicrobials and antibiotic resistant bacteria: future research is conducted so that statistical analyses could be done to investigate the relationship between ARB, antiiotics and physico-chemical parameters         84 Antimicrobials and antibiotic resistant bacteria: the presence of antibiotic resistance genes/genetic materilas in the ARBs is investigated.         85 Antimicrobials and antibiotic resistant bacteria: In addition, the presence of these antibiotic resistance genes/genetic materials in bulk water should also be investigated with a focus on the potential for transfer to susceptible bacteria         86 Microplastics: to conduct ecotoxicity test to examine effect of different major plastic types, sizes, and shapes in S Africa on Zebra fish Danio rerio, shrimps caridina nilotica and freshwater snails , Melanoides tuberculate and Algae                                                                                                                                                                                                                                                                                                     |
| fish will assist monitoring the toxic effects of potentially toxic elements<br>in reproductive and nervous systems of the organism.         83 Antimicrobials and antibiotic resistant bacteria: future research is<br>conducted so that statistical analyses could be done to investigate the<br>relationship between ARB, antiiotics and physico-chemical parameters         84 Antimicrobials and antibiotic resistant bacteria: the presence of<br>antibiotic resistance genes/genetic materilas in the ARBs is<br>investigated.         85Antimicrobials and antibiotic resistant bacteria: In addition, the<br>presence of these antibiotic resistance genes/genetic materials in bulk<br>water should also be investigated with a focus on the potential for<br>transfer to susceptible bacteria         86 Microplastics: to conduct ecotoxicity test to examine effect of<br>different major plastic types, sizes, and shapes in S Africa on Zebra fish<br>Danio rerio, shrimps caridina nilotica and freshwater snails ,<br>Melanoides tuberculate and Algae                                                                                                                                                                                                                                                                                                                                            |
| fish will assist monitoring the toxic effects of potentially toxic elements in reproductive and nervous systems of the organism.         83 Antimicrobials and antibiotic resistant bacteria: future research is conducted so that statistical analyses could be done to investigate the relationship between ARB, antiiotics and physico-chemical parameters         84 Antimicrobials and antibiotic resistant bacteria: the presence of antibiotic resistance genes/genetic materilas in the ARBs is investigated.         85 Antimicrobials and antibiotic resistant bacteria: In addition, the presence of these antibiotic resistance genes/genetic materials in bulk water should also be investigated with a focus on the potential for transfer to susceptible bacteria         86 Microplastics: to conduct ecotoxicity test to examine effect of different major plastic types, sizes, and shapes in S Africa on Zebra fish Danio rerio, shrimps caridina nilotica and freshwater snails , Melanoides tuberculate and Algae                                                                                                                                                                                                                                                                                                                                                                            |
| in reproductive and nervous systems of the organism.         83 Antimicrobials and antibiotic resistant bacteria: future research is conducted so that statistical analyses could be done to investigate the relationship between ARB, antiiotics and physico-chemical parameters         84 Antimicrobials and antibiotic resistant bacteria: the presence of antibiotic resistance genes/genetic materilas in the ARBs is investigated.         85Antimicrobials and antibiotic resistant bacteria: In addition, the presence of these antibiotic resistance genes/genetic materilas in bulk water should also be investigated with a focus on the potential for transfer to susceptible bacteria         86 Microplastics: to conduct ecotoxicity test to examine effect of different major plastic types, sizes, and shapes in S Africa on Zebra fish Danio rerio, shrimps caridina nilotica and freshwater snails , Melanoides tuberculate and Algae                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 83 Antimicrobials and antibiotic resistant bacteria: future research is conducted so that statistical analyses could be done to investigate the relationship between ARB, antiiotics and physico-chemical parameters         84 Antimicrobials and antibiotic resistant bacteria: the presence of antibiotic resistance genes/genetic materilas in the ARBs is investigated.         85Antimicrobials and antibiotic resistant bacteria: In addition, the presence of these antibiotic resistance genes/genetic materials in bulk water should also be investigated with a focus on the potential for transfer to susceptible bacteria         86 Microplastics: to conduct ecotoxicity test to examine effect of different major plastic types, sizes, and shapes in S Africa on Zebra fish Danio rerio, shrimps caridina nilotica and freshwater snails , Melanoides tuberculate and Algae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| relationship between ARB, antiiotics and physico-chemical parameters         84 Antimicrobials and antibiotic resistant bacteria: the presence of antibiotic resistance genes/genetic materilas in the ARBs is investigated.         85Antimicrobials and antibiotic resistant bacteria: In addition, the presence of these antibiotic resistance genes/genetic materials in bulk water should also be investigated with a focus on the potential for transfer to susceptible bacteria         86 Microplastics: to conduct ecotoxicity test to examine effect of different major plastic types, sizes, and shapes in S Africa on Zebra fish Danio rerio, shrimps caridina nilotica and freshwater snails , Melanoides tuberculate and Algae         87 Microplastics: to conduct ecotoxicity test to assess effect of selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 84 Antimicrobials and antibiotic resistant bacteria: the presence of antibiotic resistance genes/genetic materilas in the ARBs is investigated.         85Antimicrobials and antibiotic resistant bacteria: In addition, the presence of these antibiotic resistance genes/genetic materials in bulk water should also be investigated with a focus on the potential for transfer to susceptible bacteria         86 Microplastics: to conduct ecotoxicity test to examine effect of different major plastic types, sizes, and shapes in S Africa on Zebra fish Danio rerio, shrimps caridina nilotica and freshwater snails , Melanoides tuberculate and Algae         87 Microplastics: to conduct ecotoxicity test to assess effect of selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| antibiotic resistance genes/genetic materilas in the ARBs is investigated.         85Antimicrobials and antibiotic resistant bacteria: In addition, the presence of these antibiotic resistance genes/genetic materials in bulk water should also be investigated with a focus on the potential for transfer to susceptible bacteria         86 Microplastics: to conduct ecotoxicity test to examine effect of different major plastic types, sizes, and shapes in S Africa on Zebra fish Danio rerio, shrimps caridina nilotica and freshwater snails , Melanoides tuberculate and Algae         87 Microplastics: to conduct ecotoxicity test to assess effect of selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| investigated.         85Antimicrobials and antibiotic resistant bacteria: In addition, the         presence of these antibiotic resistance genes/genetic materials in bulk         water should also be investigated with a focus on the potential for         transfer to susceptible bacteria         86 Microplastics: to conduct ecotoxicity test to examine effect of         different major plastic types, sizes, and shapes in S Africa on Zebra fish         Danio rerio, shrimps caridina nilotica and freshwater snails ,         Melanoides tuberculate and Algae         87 Microplastics: to conduct ecotoxicity test to assess effect of selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 85Antimicrobials and antibiotic resistant bacteria: In addition, the presence of these antibiotic resistance genes/genetic materials in bulk water should also be investigated with a focus on the potential for transfer to susceptible bacteria         86 Microplastics: to conduct ecotoxicity test to examine effect of different major plastic types, sizes, and shapes in S Africa on Zebra fish Danio rerio, shrimps caridina nilotica and freshwater snails , Melanoides tuberculate and Algae         87 Microplastics: to conduct ecotoxicity test to assess effect of selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| presence of these antibiotic resistance genes/genetic materials in bulk<br>water should also be investigated with a focus on the potential for<br>transfer to susceptible bacteria86 Microplastics: to conduct ecotoxicity test to examine effect of<br>different major plastic types, sizes, and shapes in S Africa on Zebra fish<br>Danio rerio, shrimps caridina nilotica and freshwater snails ,<br>Melanoides tuberculate and Algae87 Microplastics: to conduct ecotoxicity test to assess effect of selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| water should also be investigated with a focus on the potential for transfer to susceptible bacteria       86 Microplastics: to conduct ecotoxicity test to examine effect of different major plastic types, sizes, and shapes in S Africa on Zebra fish Danio rerio, shrimps caridina nilotica and freshwater snails , Melanoides tuberculate and Algae         87 Microplastics: to conduct ecotoxicity test to assess effect of selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| transfer to susceptible bacteria       transfer to susceptible bacteria         86 Microplastics: to conduct ecotoxicity test to examine effect of different major plastic types, sizes, and shapes in S Africa on Zebra fish Danio rerio, shrimps caridina nilotica and freshwater snails , Melanoides tuberculate and Algae         87 Microplastics: to conduct ecotoxicity test to assess effect of selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 86 Microplastics: to conduct ecotoxicity test to examine effect of different major plastic types, sizes, and shapes in S Africa on Zebra fish Danio rerio, shrimps caridina nilotica and freshwater snails , Melanoides tuberculate and Algae         87 Microplastics: to conduct ecotoxicity test to assess effect of selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| different major plastic types, sizes, and shapes in S Africa on Zebra fish         Danio rerio, shrimps caridina nilotica and freshwater snails ,         Melanoides tuberculate and Algae         87 Microplastics: to conduct ecotoxicity test to assess effect of selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Danio       rerio, shrimps       caridina       nilotica       and       freshwater       snails       ,         Melanoides       tuberculate       and       Algae       87       Microplastics:       to       conduct       ecotoxicity       test to       assess       effect of       selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Melanoides tuberculate and Algae         87 Microplastics: to conduct ecotoxicity test to assess effect of selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 87 Microplastics: to conduct ecotoxicity test to assess effect of selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1 v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| plasticizers to different aquatic organisms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 88 Microplastics: to develop methods for toxicity testing to study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| microplastics in south African freshwater systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 89 Microplastics and pharmaceuticals: as drivers for antimicrobial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| resistance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| The following questions and themes as well as authors own insights,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| seems appropriate for S Africa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1 factors that affect release, transformation, persistence and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| transportation in surface and ground waters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| 3 polymer compositions of microplastics         4 POPS (including DDT and PFAS), metals, and other chemicals in plastics and microplastics         5 leaching of chemicals from plastics under SA conditions ( high temperatures, dry periods and UV)         6 biological effects studies in laboratory and field         7 sinks and sources         8 runoff and waste sites         9 accumalation in humans, animals, plants, and other biota         Microplastics in ground-and tap waters         10 aerial deposition         11 investigate the interaction of microplastics, bacteria, and antimicrobial resistance         90 Natural organic matter:         1 In order to develop a better understanding of NOM character and its removal, there is need to carry further investigations.         Seasonal variations of different NOM fractions should inform the correct Nom removal methods to enhance effectiveness of removal         2 Extensive sampling that will account for all the geographic locations in S Africa is required         3 Further development and refining of nanomaterials for NOM photolysis could alos increase treatability of the various fractions of NOM         91 River water quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire | 2 baseline and time trends                                               |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| 4 POPS (including DDT and PFAS), metals, and other chemicals in plastics and microplastics         5 leaching of chemicals from plastics under SA conditions ( high temperatures, dry periods and UV)         6 biological effects studies in laboratory and field         7 sinks and sources         8 runoff and waste sites         9 accumalation in humans, animals, plants, and other biota         Microplastics in ground-and tap waters         10 aerial deposition         11 investigate the interaction of microplastics, bacteria, and antimicrobial resistance         90 Natural organic matter:         1 In order to develop a better understanding of NOM character and its removal, there is neeed to carry further investigations.         Seasonal variations of different NOM fractions should inform the correct Nom removal methods to enhance effectiveness of removal         2 Extensive sampling that will account for all the geographic locations in S Africa is required         3 Further development and refining of nanomaterials for NOM photolysis could alos increase treatability of the various fractions of NOM         91 River water quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire                                                |                                                                          |  |
| plastics and microplastics         5 leaching of chemicals from plastics under SA conditions ( high temperatures, dry periods and UV)         6 biological effects studies in laboratory and field         7 sinks and sources         8 runoff and waste sites         9 accumalation in humans, animals, plants, and other biota         Microplastics in ground-and tap waters         10 aerial deposition         11 investigate the interaction of microplastics, bacteria, and antimicrobial resistance         90 Natural organic matter:         1 In order to develop a better understanding of NOM character and its removal, there is neeed to carry further investigations.         Seasonal variations of different NOM fractions should inform the correct Nom removal methods to enhance effectiveness of removal         2 Extensive sampling that will account for all the geographic locations in S Africa is required         3 Further development and refining of nanomaterials for NOM photolysis could alos increase treatability of the various fractions of NOM         90 Niter aver quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire                                                                                                                 |                                                                          |  |
| 5 leaching of chemicals from plastics under SA conditions ( high temperatures, dry periods and UV)         6 biological effects studies in laboratory and field         7 sinks and sources         8 runoff and waste sites         9 accumalation in humans, animals, plants, and other biota         Microplastics in ground-and tap waters         10 aerial deposition         11 investigate the interaction of microplastics, bacteria, and antimicrobial resistance         90 Natural organic matter:         1 In order to develop a better understanding of NOM character and its removal, there is neeed to carry further investigations.         Seasonal variations of different NOM fractions should inform the correct Nom removal methods to enhance effectiveness of removal         2 Extensive sampling that will account for all the geographic locations in S Africa is required         3 Further development and refining of nanomaterials for NOM photolysis could alos increase treatability of the various fractions of NOM         90 River water quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire                                                                                                                                                   |                                                                          |  |
| temperatures, dry periods and UV)         6 biological effects studies in laboratory and field         7 sinks and sources         8 runoff and waste sites         9 accumalation in humans, animals, plants, and other biota         Microplastics in ground-and tap waters         10 aerial deposition         11 investigate the interaction of microplastics, bacteria, and antimicrobial resistance         90 Natural organic matter:         1 In order to develop a better understanding of NOM character and its removal, there is neeed to carry further investigations.         Seasonal variations of different NOM fractions should inform the correct Nom removal methods to enhance effectiveness of removal         2 Extensive sampling that will account for all the geographic locations in S Africa is required         3 Further development and refining of nanomaterials for NOM photolysis could alos increase treatability of the various fractions of NOM         90 River water quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                    |                                                                          |  |
| 6 biological effects studies in laboratory and field         7 sinks and sources         8 runoff and waste sites         9 accumalation in humans, animals, plants, and other biota         Microplastics in ground-and tap waters         10 aerial deposition         11 investigate the interaction of microplastics, bacteria, and antimicrobial resistance         90 Natural organic matter:         11 In order to develop a better understanding of NOM character and its removal, there is neeed to carry further investigations.         Seasonal variations of different NOM fractions should inform the correct Nom removal methods to enhance effectiveness of removal         2 Extensive sampling that will account for all the geographic locations in S Africa is required         3 Further development and refining of nanomaterials for NOM photolysis could alos increase treatability of the various fractions of NOM         91 River water quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                                                             |                                                                          |  |
| 7 sinks and sources       8 runoff and waste sites         9 accumalation in humans, animals, plants, and other biota       9 accumalation in humans, animals, plants, and other biota         Microplastics in ground-and tap waters       10 aerial deposition         11 investigate the interaction of microplastics, bacteria, and antimicrobial resistance       90 Natural organic matter:         90 Natural organic matter:       11 In order to develop a better understanding of NOM character and its removal, there is neeed to carry further investigations.         Seasonal variations of different NOM fractions should inform the correct Nom removal methods to enhance effectiveness of removal         2 Extensive sampling that will account for all the geographic locations in S Africa is required         3 Further development and refining of nanomaterials for NOM photolysis could alos increase treatability of the various fractions of NOM         91 River water quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                              |                                                                          |  |
| 8 runoff and waste sites       9 accumalation in humans, animals, plants, and other biota         9 accumalation in humans, animals, plants, and other biota       Microplastics in ground-and tap waters         10 aerial deposition       11 investigate the interaction of microplastics, bacteria, and antimicrobial resistance         90 Natural organic matter:       90 Natural organic matter:         1 In order to develop a better understanding of NOM character and its removal, there is neeed to carry further investigations.         Seasonal variations of different NOM fractions should inform the correct Nom removal methods to enhance effectiveness of removal         2 Extensive sampling that will account for all the geographic locations in S Africa is required         3 Further development and refining of nanomaterials for NOM photolysis could alos increase treatability of the various fractions of NOM         91 River water quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                                                         | •                                                                        |  |
| 9 accumalation in humans, animals, plants, and other biota         Microplastics in ground-and tap waters         10 aerial deposition         11 investigate the interaction of microplastics, bacteria, and antimicrobial resistance         90 Natural organic matter:         1 In order to develop a better understanding of NOM character and its removal, there is neeed to carry further investigations.         Seasonal variations of different NOM fractions should inform the correct Nom removal methods to enhance effectiveness of removal         2 Extensive sampling that will account for all the geographic locations in S Africa is required         3 Further development and refining of nanomaterials for NOM photolysis could alos increase treatability of the various fractions of NOM         91 River water quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                                                                                                                                                                                        | 7 sinks and sources                                                      |  |
| Microplastics in ground-and tap waters         10 aerial deposition         11 investigate the interaction of microplastics, bacteria, and antimicrobial resistance         90 Natural organic matter:         11 In order to develop a better understanding of NOM character and its removal, there is neeed to carry further investigations.         Seasonal variations of different NOM fractions should inform the correct Nom removal methods to enhance effectiveness of removal         2 Extensive sampling that will account for all the geographic locations in S Africa is required         3 Further development and refining of nanomaterials for NOM photolysis could alos increase treatability of the various fractions of NOM         91 River water quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 runoff and waste sites                                                 |  |
| 10 aerial deposition       10 aerial deposition         11 investigate the interaction of microplastics, bacteria, and antimicrobial resistance       90 Natural organic matter:         90 Natural organic matter:       1 In order to develop a better understanding of NOM character and its removal, there is neeed to carry further investigations.         Seasonal variations of different NOM fractions should inform the correct Nom removal methods to enhance effectiveness of removal         2 Extensive sampling that will account for all the geographic locations in S Africa is required         3 Further development and refining of nanomaterials for NOM photolysis could alos increase treatability of the various fractions of NOM         91 River water quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 accumalation in humans, animals, plants, and other biota               |  |
| 11 investigate the interaction of microplastics, bacteria, and antimicrobial resistance         90 Natural organic matter:         1 In order to develop a better understanding of NOM character and its removal, there is neeed to carry further investigations.         Seasonal variations of different NOM fractions should inform the correct Nom removal methods to enhance effectiveness of removal         2 Extensive sampling that will account for all the geographic locations in S Africa is required         3 Further development and refining of nanomaterials for NOM photolysis could alos increase treatability of the various fractions of NOM         91 River water quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Microplastics in ground-and tap waters                                   |  |
| antimicrobial resistance       90 Natural organic matter:         1 In order to develop a better understanding of NOM character and its removal, there is neeed to carry further investigations.         Seasonal variations of different NOM fractions should inform the correct Nom removal methods to enhance effectiveness of removal         2 Extensive sampling that will account for all the geographic locations in S Africa is required         3 Further development and refining of nanomaterials for NOM photolysis could alos increase treatability of the various fractions of NOM         91 River water quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 aerial deposition                                                     |  |
| 90 Natural organic matter:       1 In order to develop a better understanding of NOM character and its removal, there is neeed to carry further investigations.         Seasonal variations of different NOM fractions should inform the correct Nom removal methods to enhance effectiveness of removal         2 Extensive sampling that will account for all the geographic locations in S Africa is required         3 Further development and refining of nanomaterials for NOM photolysis could alos increase treatability of the various fractions of NOM         91 River water quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11 investigate the interaction of microplastics, bacteria, and           |  |
| 1 In order to develop a better understanding of NOM character and its removal, there is neeed to carry further investigations.         Seasonal variations of different NOM fractions should inform the correct Nom removal methods to enhance effectiveness of removal         2 Extensive sampling that will account for all the geographic locations in S Africa is required         3 Further development and refining of nanomaterials for NOM photolysis could alos increase treatability of the various fractions of NOM         91 River water quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | antimicrobial resistance                                                 |  |
| removal, there is need to carry further investigations.         Seasonal variations of different NOM fractions should inform the correct Nom removal methods to enhance effectiveness of removal         2 Extensive sampling that will account for all the geographic locations in S Africa is required         3 Further development and refining of nanomaterials for NOM photolysis could alos increase treatability of the various fractions of NOM         91 River water quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90 Natural organic matter:                                               |  |
| Seasonal variations of different NOM fractions should inform the correct Nom removal methods to enhance effectiveness of removal         2 Extensive sampling that will account for all the geographic locations in S Africa is required         3 Further development and refining of nanomaterials for NOM photolysis could alos increase treatability of the various fractions of NOM         91 River water quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 In order to develop a better understanding of NOM character and its    |  |
| correct Nom removal methods to enhance effectiveness of removal         2 Extensive sampling that will account for all the geographic locations<br>in S Africa is required         3 Further development and refining of nanomaterials for NOM<br>photolysis could alos increase treatability of the various fractions of<br>NOM         91 River water quality: This practical model was applied to a small-<br>scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | removal, there is neeed to carry further investigations.                 |  |
| 2 Extensive sampling that will account for all the geographic locations in S Africa is required         3 Further development and refining of nanomaterials for NOM photolysis could alos increase treatability of the various fractions of NOM         91 River water quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Seasonal variations of different NOM fractions should inform the         |  |
| in S Africa is required         3 Further development and refining of nanomaterials for NOM photolysis could alos increase treatability of the various fractions of NOM         91 River water quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | correct Nom removal methods to enhance effectiveness of removal          |  |
| 3 Further development and refining of nanomaterials for NOM photolysis could alos increase treatability of the various fractions of NOM         91 River water quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 Extensive sampling that will account for all the geographic locations  |  |
| photolysis could alos increase treatability of the various fractions of NOM         91 River water quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in S Africa is required                                                  |  |
| photolysis could alos increase treatability of the various fractions of NOM         91 River water quality: This practical model was applied to a small-scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 Further development and refining of nanomaterials for NOM              |  |
| 91 River water quality: This practical model was applied to a small-<br>scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | photolysis could alos increase treatability of the various fractions of  |  |
| scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NOM                                                                      |  |
| scale river system (main focus was Grabouw, and not the entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91 River water quality: This practical model was applied to a small-     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                          |  |
| catchment). More research is required on large-scale rivers to determine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | catchment). More research is required on large-scale rivers to determine |  |
| how variability affects the outputs of these models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , 1 0                                                                    |  |

| 02 Disconcentration and literation of the state of the st | 1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 92 River water quality: research is also needed to determine the impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| of the identified pollutants on the aquatic ecosystems in the Swannies,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| Klipdrift and Palmiet rivers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 93 Polycyclic aromatic hydrocarbons in aquatic ecosystems: Add a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| social component to the study in which the human populations physical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| interaction and dependence on the Klip River running through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| Soweto/lenasia is quantified, ie, using questionnaires and interviewing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| citizens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| 94 Agricultural chemicals: decisions relating to monitoring of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| pesticides in the selected study areas benefited significantly from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| pesticide use data, prioritization matrix and pesticide use maps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| developed in this project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| It is recommended that these resources be consulted when undertaking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| similar studies in the future.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| 94 Agricultural chemicals: While the analytical approach adopted in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| this study catered for a large number of different pesticides, it is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| important to note that glyphosate (most heavily applied pesticide in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| country) was not included in screening or quantitative analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Considering its high quantity of use as well as increasing evidence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| human health-related effects, future research should focus on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| developing analytical methods for detection of this pesticide (and its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| breakdown products) in water resources in S Africa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| 95 The use of sentinel monitoring yielded valuable information towards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| the site-specific animal health assessment. The observations would                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| suggest that further studies into human health with bromide as a key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| priority chemical are indicated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 96Agricultural chemicals: Given the chllenges related to monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| (due to the transient nature of contamination) and that pesticide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| contamination in water resources occurs primarily as a result of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| nonpoint sources (runoff, leaching) further research should focus on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| modelling techniques aimed at assessing the fate, transport and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |

|                                       | mitigation/management options of pesticides in water at multiple scales   |  |
|---------------------------------------|---------------------------------------------------------------------------|--|
|                                       | (field to catchment)                                                      |  |
|                                       | 97 Agricultural chemicals: research should focus on the integration of    |  |
|                                       | these models into the risk assessment process conducted during the        |  |
|                                       | registration of pesticides. While the registration process considers the  |  |
|                                       | toxicity of a pesticide, there are no exposure assessment procedures      |  |
|                                       | performed to assess the environmental fate and predicted environmental    |  |
|                                       | concentrations under S African conditions                                 |  |
|                                       | 98 Drug resistant microorganisms: The contribution of drinking water      |  |
|                                       | chemicals disinfectants on the development of resistance profiles is an   |  |
|                                       |                                                                           |  |
|                                       | issue which requires further investigation                                |  |
|                                       | 99 Drug-resistant microorganisms: a followup WRC study is thus            |  |
|                                       | underway, the overall goal of which is to establish methodologies to      |  |
|                                       | monitor the dynamics of antibiotic resistant bacteria and genes in raw    |  |
|                                       | and final water samples drinking water samples in selected                |  |
|                                       | conventional and advanced drinking water plants in S Africa               |  |
|                                       | 100 Drug resistant microorganisms: this project will also provide a       |  |
|                                       | platform to engage on the broader on antimicrobial resistance, with the   |  |
|                                       | potential to arrive at a multi-sectorial research agenda                  |  |
|                                       | 101 Antimicrobials/antibiotic resistant bacteria: a comprehensive study   |  |
|                                       | on antimicrobial substances removal capacity of various drinking water    |  |
|                                       | treatment configurations in operation in SA.                              |  |
|                                       | These should also be done under varied flow conditions                    |  |
|                                       |                                                                           |  |
|                                       | 102 Antimicrobials/antibiotic resistant bacteria: the presence,           |  |
|                                       | distribution and dynamics of antibiotic resistance genes in the ARBs      |  |
|                                       | should be investigated                                                    |  |
|                                       | However the presence of these genes/genetic materials in bulk water       |  |
|                                       | should also be investigated with a focus on the potential for transfer to |  |
|                                       | susceptible bacteria                                                      |  |
| · · · · · · · · · · · · · · · · · · · |                                                                           |  |

|                                                                           | 1 |
|---------------------------------------------------------------------------|---|
| 103 Preservatives, anti-oxidants and flavorants present in cosmetics and  |   |
| cleansing products has been less studied                                  |   |
| 104 Further studies of additional classes of pharmaceuticals and other    |   |
| CECs in on-site wastewater effluents                                      |   |
| 105 The focus of research should be accordingly transferred from          |   |
| PBDE to other currently used BFRs in later study.                         |   |
| 106 To better study and thus understand the effects of multiple stressors |   |
| 107 Aquatic microbial diversity: the advent of new NGS technologies       |   |
| that substantially decrease the cost of generating sequence datasets      |   |
| provide and opportunity to apply the approach taken in this study         |   |
| widely to include other important estuarine systems around the SA         |   |
| cpastline                                                                 |   |
| 108 EDCs removal from wastewater: This study partially quantified the     |   |
| risks resulting from discharging EDCs into receiving water bodies         |   |
| As only a few EDCs were evaluated, there is a need to study additional    |   |
| groups of these compounds.                                                |   |
| 109 Emerging and persistent contaminants/pathogens: there is a need to    |   |
| expand the scope of the study to include several rivers that feed into    |   |
| drinking water treatment plants                                           |   |
| 110 Urban wastewaste epidemiology: Gaps in knowledge, research,           |   |
| policy:                                                                   |   |
| Surrogate chemicals/physico-chemical properties association               |   |
| Early warning showing public health concerns                              |   |
| Near/real time                                                            |   |
| Sensing/monitoring (large datasets, modelling)                            |   |
| 111 Analysis/methods - Better development of accurate sediment            |   |
| quality criteria                                                          |   |
| 112 The need for critical attention amog environmental researchers on     |   |
| key aspects of study quality.                                             |   |
|                                                                           |   |

| 4 | Monitoring | 1 Long-term monitoring encompassing all aquatic matrices                                                                                                                                                                                                                                           | 89<br>(7.4%<br>[3] |
|---|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|   |            | 118 CECs in recycling/re-use: combined effects and concentrations are<br>mostly unknown                                                                                                                                                                                                            |                    |
|   |            | 117 Organochlorine pesticides: The uMngeni River: very limited<br>studies have been carried out on the qualitative and quantitative analysis<br>of pesticides in this river.                                                                                                                       |                    |
|   |            | importance for developing countries as the use of these EDCs is<br>suspected to be on the rise                                                                                                                                                                                                     |                    |
|   |            | such as TBBPA and PCBs; an accurate assessment (occurrence and fate) of alkylphenol ethoxylates in the indoor environment is of major                                                                                                                                                              |                    |
|   |            | 116 Alkyl phenol ethoxylates (APEs): Indoor dust has been implicated<br>as an important exposure route for other persistent organic pollutants,                                                                                                                                                    |                    |
|   |            | these compartments inhabitants (birds, frogs, algae, daphnia, dolphins,<br>etc) need to be undertaken in order to assess the impact of APEs on<br>biodiversity of such bodies                                                                                                                      |                    |
|   |            | 115 Alkyl phenol ethoxylates (APEs): as sewage is known to be<br>released into wetlands and oceanic waters, studies of APE levels in                                                                                                                                                               |                    |
|   |            | close to agricultural, mining and chemical industries, as the concentration are expected to be highest there.                                                                                                                                                                                      |                    |
|   |            | identified as a major source of APEs and their degradation by-products<br>in the environment; thus, more studies should be undertaken to measure<br>the levels of APEs at WWTP outfalls, and terrestrial environments                                                                              |                    |
|   |            | <ul> <li>113 Aquatic biota samples: the implementation of a standardised nomenclature. The standardisation could help information exchange in the scientific community and would help scientific dissemination.</li> <li>114 Alkyl phenol ethoxylates (APEs): wastewater effluents were</li> </ul> |                    |

| 2 Routine monitoring of antibiotics and resistant bacterial strains in      |  |
|-----------------------------------------------------------------------------|--|
| drinking water                                                              |  |
| 3 Monitoring of new CECs                                                    |  |
| 4 Limited survey/monitoring has been performed in other countries or        |  |
| regions                                                                     |  |
| 5 Targeted monitoring                                                       |  |
| 6 Monitoring of persistent CECs, antiretrovirals, like nevirapine           |  |
| 7 Monitoring of biota                                                       |  |
| 8 Monitoring- Importance of further characterising the nationwide           |  |
| aquatic occurrence of those analytes whose ambient water                    |  |
| concentrations appear to frequently exceed well established ECs and         |  |
| their pathways into the environment                                         |  |
| 9 Monitoring info- limited monitoring information for coastal and           |  |
| marine waters                                                               |  |
| 10 Environmental monitoring studies of antihistamine metabolites and        |  |
| <br>degradates are lacking, but deserve attention in the future             |  |
| 11 Monitoring- Unique global scanning approach:to identify specific         |  |
| chemicals and locations for future environmental assessment and             |  |
| management efforts                                                          |  |
| 12 Monitoring- the Tiber waters should be continuously monitored            |  |
| since POPs may still pose some risks to aquatic ecosystems.                 |  |
| 13 Scope of monitoring- other antibiotics deserve attention from            |  |
| environmental assessors and managers                                        |  |
| 14 The monitoring of HBCD in China should also be continued for a           |  |
| long time                                                                   |  |
| 15 Restrictions on environmental releases and continued monitoring are      |  |
| still essential in China, where studies on BFRs, especially non-PBDEs       |  |
| BFRs, remain limited relative to its important role in the BFR market       |  |
| 16 Monitoring/sampling- Solid waste repositories (non engineered            |  |
| landfills), onsite sanitation systems (pit latrines, septic tanks), funeral |  |

| parlours and cemeteries/gravesites constitute overlooked potential        |  |
|---------------------------------------------------------------------------|--|
| hotspots sources of args.                                                 |  |
| 17 The necessity of introduction of monitoring program for emerging       |  |
| pollutants                                                                |  |
| 18 In the area of technological advances and effective monitoring, most   |  |
| countries are in the early implementation stages and have only recently   |  |
| made efforts into the investigation of cyano bacterial blooms, with       |  |
| identification and toxicity being the primary information screened for.   |  |
| 19 A development of monitoring guidelines specific to particular          |  |
| regions of the continent or of the entire continent may prove very useful |  |
| and is strongly recommended.                                              |  |
| 0.                                                                        |  |
| 20 The implementation of the guidelines and accessability is also a       |  |
| needed practical intervention                                             |  |
| 21 Mussels as sentinels for chemical monitoring is rational for many      |  |
| reasons, and development of environmental assessment criteria             |  |
| specially adapted for these sentinels is a strategically important        |  |
| endeavour.                                                                |  |
| 22 Anti TB drugs: high cost of advanced analytical tools needed are       |  |
| <br>limiting effective monitoring of these compounds in the environment.  |  |
| 23 Along with the antibiotics of common usage, the emerging               |  |
| contaminant candidate list should include: nevirapine, efavirenz,         |  |
| carbamazepine, methocarbamol, venlafaxine (hydrochloride) and             |  |
| bromacil. They are contaminants that require operational monitoring in    |  |
| South African urban waters.                                               |  |
| 24 Future national monitoring programs in developing counties should      |  |
| consider including TCS and TCC as results suggest both are a concern      |  |
| for freshwater and in WWTPs.                                              |  |
| 25 ENMs; field monitoring data are required                               |  |
| 26 REEs: Most studies have focused on additional studies on La, Gd,       |  |
| Ce., there is a need for extending the environmental monitoring and       |  |

|   | characterization studies to other 12 REES, excluding Pm, which does      |  |
|---|--------------------------------------------------------------------------|--|
|   | not occur naturally                                                      |  |
|   | 27 Carbamazepine, naproxen, diclofenac, ibuprofen to be regarded as      |  |
|   | priority ECs for environmental monitoring due to their regular detection |  |
|   | and persistence in environmental waters, and their possible contribution |  |
|   | towards adverse health effects in humans and wildlife.                   |  |
|   | 28 Recent identification of novel fluorinated compounds in aqueous       |  |
|   | film forming foams and environmental samples can serve as target         |  |
|   | compounds to expand PFAA measurements to include possible                |  |
|   | replacement chemicals                                                    |  |
|   | 29 SUGEs: Conducting health surveillance studies to provide baseline     |  |
|   | data, and determine whether conditions are improving or worsening.       |  |
|   | Such surveillance studies should include occupational workers in the     |  |
|   | mining industry, sculptors, carvers and engravers and their families.    |  |
|   | 30 Periodic monitoring of diclofenac and its metabolites/transformation  |  |
|   | products in all environmental compartments should have high priority     |  |
|   | to both protect the health of the population and reduce diclofenac       |  |
|   | contamination in the water cycle                                         |  |
|   | 31 Many European and African countries lack monitoring studies in        |  |
|   | their research programs. Same situation is observed in Mediterranean,    |  |
|   | Asia (excluding China) and Australia.                                    |  |
|   | 32 Diclofenac: the above challenges will be addressed by shifting to     |  |
|   | more monitoring research and improving the efficiency of WWTPs           |  |
|   | through advanced technologies without any secondary pollution in all     |  |
|   | countries to save the water cycle and ecosystem                          |  |
|   | 33 POPs: another issue is the lack of annual measurements and            |  |
|   | systematic monitoring over time for POPs in all regions                  |  |
|   | 34 Temporal data have been assessed, but majority of datasets do not     |  |
|   | show trends due to limited sampling periods, and limited sample size.    |  |
| I | F OF F THE F OF F                                                        |  |

| More consistent monitoring produces nationwide data, leading to            |  |
|----------------------------------------------------------------------------|--|
| informed risk management studies                                           |  |
| 35 Conduct extensive monitoring programs on the abundance of               |  |
| microplastics in aquatic products that are at the point of human           |  |
|                                                                            |  |
| consumption in order to calculate the amount of microplastics              |  |
| introduced into humans via consuming aquatic products                      |  |
| 36 SSRIs: Among wastewater treatment technologies examined                 |  |
| , THV exceedances for each SSRI were not observed among treatment          |  |
| type, though effluent levels and exceedances were consistently lower       |  |
| than influent sewage, which highlights the importance of extending         |  |
| monitoring efforts in regions with limited treatment capacity.             |  |
| 37 In a world where water consumption is predicted to increase, water      |  |
| scarcity will continue to intensify and a dependence on water reuse will   |  |
| become common practice, the monitoring of pollutants will become           |  |
| imperative.                                                                |  |
| 38 It is up to the scientific community to clearly impress the importance  |  |
| of monitoring networks and the upkeep and development of long-term         |  |
| data sets on decision makers, while prioritizing the need for installation |  |
| and maintenance of measuring systems in the face of resource               |  |
| constraints                                                                |  |
| 39 Environmental risk assessment revealed special concern on               |  |
| hormones derived from improper wastewater disposal. Results allowed        |  |
| the identification of of highly vulnerable sites and critical compo3unds   |  |
| for which further monitoring and assessment is highly recommended.         |  |
| 40 ECs: these substances are not included in the usual monitoring          |  |
| program of WWTPs                                                           |  |
| 41 Domestic effluent can contain equal or even higher concentrations       |  |
| of pharmaceuticals than hospital effluent                                  |  |
| This reveals the importance of monitoring urban WWTP and                   |  |
|                                                                            |  |
| establishing a priority list of contaminants                               |  |

| 42 Since agriculture is one of the main economic activities in latin      |
|---------------------------------------------------------------------------|
| America, monitoring the occurrence of emerging contaminants in soil       |
| is also very important                                                    |
| 43 Feathers can be useful as a biomonitor for POPs, mercury and           |
| several other metals under the conditions that appropriate sampling       |
| designs and pretreatment of samples along with QA/QC protocols            |
| during storage, preparation and analysis are taken into account           |
| the specific bird species, the type of feather, the type of pollution and |
| potential external contamination are very important to consider for a     |
| successful biomonitoring strategy.                                        |
| 44 Further studies are required to investigate the contribution of pearl  |
| millet in the daily intake of mycotoxins by Tunisian consumers for the    |
|                                                                           |
| monitoring of the risk ssessment                                          |
| 45 Metallic elements: due to their toxic threat, authors suggest at least |
| Hg, Al, Pb, As, Co, Cd, Cu, V, Ni, Zn, Mn, and Sr be monitored            |
| 46 Autors also suggest adding Au, Ba, and Tl to this list, since it seems |
| to be receiving more attention from terrestrial and marine perspectives   |
| 47 Based on authors observations of Sr, it seems prudent to add the       |
| remaining alkaline earth metals, Ca, Ra, Be, Mg.                          |
| 48 Metal-elements: economic development and other forces such as          |
| conflict and population growth around the Indian Ocean basin are likely   |
| to increase pollutant releases and trends need to be monitored            |
| 49 NOM in water: Owing to expensive equipment used in NOM                 |
| characterization, it Is not possible to routinely monitor the levels and  |
| character of NOM in source waters                                         |
| 50 NOM: alternatively, surrogate parameters such as DOC and TOC           |
| can be monitored instead                                                  |
| 51 NOM water utilities are just beginning to appreciate the need to       |
| monitor NOM                                                               |
|                                                                           |

| 52 Agricultural chemicals: despite monitoring limitations, mentioned       |  |
|----------------------------------------------------------------------------|--|
| above, this study did reveal relatively high concentrations of             |  |
| particularly atrazine, terbuthylazine and simazine in maize, and sugar     |  |
|                                                                            |  |
| cane areas.                                                                |  |
| Their ubiquitous presence in water resources warrants further              |  |
| investigation in areas where use is high                                   |  |
| In particular, more detailed surveys of groundwater resources and          |  |
| boreholes that deliver drinking water and for human and animal             |  |
| consumption should be surveyed in more detail                              |  |
| 53 Agricultural chemicals: In all study areas, the detection of pesticides |  |
| was well predicted by indices used in the prioritization procedure,        |  |
| particularly quantity of use and mobility (as indicated by GUS index).     |  |
| In addition, qualitative screening analysis was also instructive in        |  |
| helping to identify specific pesticides in the selected catchment study    |  |
| areas for further quantitative analysis.                                   |  |
| It is therefore recommended that the combination of these predictive       |  |
| and analytical tools be consulted when planning future pesticide           |  |
| monitoring and risk assessment studies of this nature                      |  |
| 54 Agricultural chemicals: improved prioritization of environmental        |  |
| risk (to inform environmentally friendly use of pesticides), monitoring    |  |
| and modelling approaches are therefore essential to close the gap on       |  |
| assessing the risks of pesticides in the environment                       |  |
| 55 PAH, PCB, OC pesticide:: Contaminant concentrations in many fish        |  |
| species and in mussels were high enough to pose a potential chronic        |  |
| and carcinogenic health risk to human consumers.                           |  |
| This finding has important implications in that it calls for the more      |  |
| <b>č</b> 1 1                                                               |  |
| frequent monitoring of contaminant monitoring in fish and shellfish and    |  |
| the communication of the findings to recreational and subsistence          |  |
| fishers                                                                    |  |

| 56 PAH, PCB, OC pesticide: There is a need for the routine monitoring     |  |
|---------------------------------------------------------------------------|--|
| of these contaminants in aquatic monitoring programs                      |  |
| 57 PAH: PAHs were ubiquitous in sediment in the eThekwinin area,          |  |
| and in catchments where the predominant land-use is urban or industrial   |  |
| were likely to have been predominantly derived from anthropogenic         |  |
| sources                                                                   |  |
| It is recommended, therefore, that PAHs should routinely be analysed      |  |
| in sediment as part of aquatic monitoring programmes in urbanized and     |  |
| industrialised areas.                                                     |  |
| 58 PAH, PCB, OC pesticide: this study has highlighted the potential       |  |
| use of small, forage fish (specifically ambassids) as sentinels for       |  |
| contaminant monitoring in SA estuaries, based on the fact that they       |  |
| accumulated numerous contaminants in their tissue to high                 |  |
| concentrations.                                                           |  |
| It is recommended that a study that compares concentrations of            |  |
| chemicals in the tissues of ambassids and larger fish between putatively  |  |
| contaminated and uncontaminated estuarine ecosystems in the               |  |
| eThekwini area of KZN be performed.,                                      |  |
| *                                                                         |  |
| as a case study on the potential use of these fish as sentinels for       |  |
| contaminant monitoring.                                                   |  |
| 59 17 beta estradiol in wastewater: considering that only 78% of EE,      |  |
| the major component of birth control pill, is removed by water            |  |
| treatment plants, it is very urgent to develop aptasensors for monitoring |  |
| EE level in water for domestic usage.                                     |  |
| 60 17 beta estradiol in wastewater: another important research to         |  |
| undertake is the development of electrochemical elisa library for the     |  |
| major estrogenous endocrine disrupting chemicals. Commercial elisa        |  |
| systems are mainly basedon UV-Vis measurements                            |  |
| systems are mainly based on UV-Vis measurements                           |  |

| 61 A quotie migraphiel dismeiter In addition the subsect of 11 1          | 1 |
|---------------------------------------------------------------------------|---|
| 61 Aquatic microbial divrsity: In addition, the reduced cost could make   |   |
| it feasible to use of this technology for routine monitoring of sensitive |   |
| estuarine systems                                                         |   |
| 62 BMAA: our understanding of the transient nature of BMAA in             |   |
| cyanobacteria indicates a requirement for frequent monitoring of          |   |
| cyanobacteria in drinking water sources where elevated chlorophyll        |   |
| content is detected.                                                      |   |
| 63 BMAA: the complex nature of the apparent nitrogen: carbon ratio        |   |
| regulation of BMAA production indicates the necessity for a long-term     |   |
| monitoring program wherein all relevant physicochemical parameters        |   |
| are measured in conjunction with BMAA so as to develop an                 |   |
| applicable,                                                               |   |
| environmental model for BMAA risk so as to inform an alert level          |   |
| guideline and better manage exposure risk                                 |   |
| 64 Brominated flame retardants: Phosphorous flame retardants which        |   |
| have also replaced the BFRs should be monitored in water systems          |   |
| since information on these is still scarce in South Africa                |   |
| 65 Emerging organic pollutants: Continue monitoring studies with the      |   |
| recommendations that eThekwini includes organic pollutants in its         |   |
| monitoring studies of water bodies                                        |   |
| 66 Emerging chemical pollutants: it is necessary that the technologies    |   |
| developed in this initial project be applied to the monitoring of the     |   |
| target ECPs in real water samples to optimize and validate the results    |   |
| and to determine effects of various variables and parameters (such as     |   |
| pH, contact time and interferences) on their performance                  |   |
| 67 Emerging/persistent contaminants/pathogens: a water reference          |   |
| laboratory should be established in S Africa that would support the       |   |
| monitoring labs                                                           |   |
|                                                                           |   |

| 68 Fluorescent sensors for screening ECP in water: portable sensor<br>should also be developed based on these sensor materials, to allow for<br>on-site, real-time monitorigng of ECPs in surface waters |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 69 Trace elements: It is recommended that trace element concentrations                                                                                                                                   |  |
| within L capensis be monitored to determine if the trend identified                                                                                                                                      |  |
| above is maintained                                                                                                                                                                                      |  |
| 70 Metals: It is important to monitor both the surface sediment and                                                                                                                                      |  |
| aqueous environment, as these form sinks for pollutants                                                                                                                                                  |  |
| 71 Metals: Information from the present study can be used as baseline                                                                                                                                    |  |
| data, for future monitoring of metal concentrations in Cape Town,                                                                                                                                        |  |
| South Africa                                                                                                                                                                                             |  |
| 72 Carbapenem resistant bacteria: Since CRBP grown at 42°C was not                                                                                                                                       |  |
| found in natural water samples beyond the vicinity of hospitals, these                                                                                                                                   |  |
| bacteria may be used as an indicator of hospital wastewaters                                                                                                                                             |  |
| 73 PCB residues: Because of the persistence of these contaminants and                                                                                                                                    |  |
| the resulting harmful effects to organisms and human health, it is                                                                                                                                       |  |
| necessary to continue to monitor their distribution in the environment.                                                                                                                                  |  |
| 74 PCB residues: Therefore, regulatory implementation for monitoring                                                                                                                                     |  |
| of wastewater emissions into this lake need to be implemented, as this                                                                                                                                   |  |
| is suspected to be the primary source of PCBs in the NE Lake                                                                                                                                             |  |
| 75 Toxic elements: Authors recommend continuous monitoring control                                                                                                                                       |  |
| measures in studied areas as a high priority.                                                                                                                                                            |  |
| 76 CECs in recycling/reuse: implement barriers, monitoring                                                                                                                                               |  |
| programmes and assessment programmes to eliminate or minimize the                                                                                                                                        |  |
| risks                                                                                                                                                                                                    |  |
| 77 CECs There is a need to conduct a national monitoring programme                                                                                                                                       |  |
| in order to obtain the spatial distribution of these emerging                                                                                                                                            |  |
| contaminants                                                                                                                                                                                             |  |

| 77 Polycyclic aromatic hydrocarbons in aquatic ecosystems:<br>incorporating results from this study into management of this water<br>catchment one must keep in mind that PAHs are mainly airborne.                                                                                                                                                                                                                                                              |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Therefore a successful monitoring program of any water catchment for<br>these compounds would require an integrated approach including air<br>quality monitoring                                                                                                                                                                                                                                                                                                 |  |
| 78 From a monitoring perspective, further research should focus on the development and use of passive samplers (including biomonitors) in providing time integrated measurements of pesticide contamination                                                                                                                                                                                                                                                      |  |
| 79 Agricultural chemicals: Given the typically transient nature of pesticide contamination in water resources, the consistent detection of atrazine and terbuthylazine at study sites in the Free State indicates a saturation of the water resource, to the extent that a more detailed monitoring programme, with a higher frequency of sample collection (or more sites) is warranted so as to establish a more accurate picture of exposure associated risks |  |
| 80 CECs in wastewater for direct potable reuse: It is recommended that<br>a battery of bioassays representing different trophic levels be included<br>in a monitoring programme if direct reuse of wastewater is known to<br>occur either intentionally or unintentionally                                                                                                                                                                                       |  |
| Different bioassays can be selected if various activities are tested, e.g., different oestrogen mimicking assays and anti-androgenic activity may be included                                                                                                                                                                                                                                                                                                    |  |
| 81 Urban wastewater epidemiology: compare sampling, detection,<br>monitoring methods:                                                                                                                                                                                                                                                                                                                                                                            |  |
| <ul> <li>sensing/monitoring (large datasets, modelling)</li> <li>82 Drug-resistant microorganisms: Methods to be established in this study will be a vital contribution towards the surveillance of antimicrobial resistance activities in the water sector and possible alignment with existing activities in the health sector</li> </ul>                                                                                                                      |  |

| 83 Drug resistant microorganisms: Outcomes from this study will<br>inform future water quality monitoring considerations on the |  |
|---------------------------------------------------------------------------------------------------------------------------------|--|
| reclamation of wastewater for drinking purposes.                                                                                |  |
| 84 There are several key advantages to using sediment or biota as monitoring matrices as alternatives to water samples;         |  |
| 85 To further clarify and minimise the influence of confounding non-                                                            |  |
| target factors in mussel monitoring, e.g., by adopting international                                                            |  |
| harmonisation and standardization of study conditions and program                                                               |  |
| designs.                                                                                                                        |  |
| 86 Urban wastewater epidemiology: compare sampling, detection,                                                                  |  |
| monitoring methods:                                                                                                             |  |
| Mass loading                                                                                                                    |  |
| Composite sampling vs grab sampling                                                                                             |  |
| 87 To further clarify and minimise the influence of confounding non-                                                            |  |
| target factors in mussel monitoring, e.g., by adopting international                                                            |  |
| harmonisation and standardization of study conditions and program                                                               |  |
| designs.                                                                                                                        |  |
| 88 Continuous monitoring should involve screening of matrices via                                                               |  |
| targeted and non-targeted analyses for new and understudied POPs.                                                               |  |
| This would reflect POP contaminants that humans and wildlife are                                                                |  |
| exposed to. This gap could be addressed with a complementary                                                                    |  |
| non/semi-targeteed analytical approach that would aid in identification                                                         |  |
| of unknown contaminants, and result in more robust risk assessments.                                                            |  |
| Collection of data from a wider range of analytes would be beneficial to                                                        |  |
| help identify the main sources of POPs and establish their importance                                                           |  |
| in different regions. Non-target analyses of archived sample extracts                                                           |  |
| could be investigated to assess spatial and temporal trends in data deficient areas                                             |  |
|                                                                                                                                 |  |
| 89 Engineered nanomaterials: Environmental factors such as pH, ionic                                                            |  |
| strength, and temperature and retention times are relevant                                                                      |  |
|   |                                                          | environmental factors that require monitoring in the event of accidental release of ENMs to establish expected impacts and potential mitigation measures. |                     |
|---|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 5 | Removal/reduction/<br>remediation/treatment/purification | 1 Removal by waste water treatment plants (WWTPs)                                                                                                         | 81<br>(6.7%)<br>[4] |
|   |                                                          | 2 Performance and removal mechanisms in wastewater treatment                                                                                              |                     |
|   |                                                          | systems                                                                                                                                                   |                     |
|   |                                                          | 3 Monitoring treatment                                                                                                                                    |                     |
|   |                                                          | 4 Performance of Point-of-use (POU) technologies for their removal                                                                                        |                     |
|   |                                                          | 5 Role of microorganisms in removal of CECs in wastewater                                                                                                 |                     |
|   |                                                          | stabilisation ponds                                                                                                                                       |                     |
|   |                                                          | 6 Design of waste stabilisation ponds (WSP) toward optimization -                                                                                         |                     |
|   |                                                          | inclusion of tertiary treatment step                                                                                                                      |                     |
|   |                                                          | 7 Knowledge on the performance of POUs towards removal of CECs                                                                                            |                     |
|   |                                                          | 8 Treatment technologies for removal from water                                                                                                           |                     |
|   |                                                          | 9 Removal - Novel materials for effective environmentally friendly treatment processes -                                                                  |                     |
|   |                                                          | 10 Combination of treatment methods for efficient ECs removal                                                                                             |                     |
|   |                                                          | 11 Health standards for treatment                                                                                                                         |                     |
|   |                                                          | 12 Adequacy/performance of treatment techniques (chemical, biological, membrane filtration, adsorption)                                                   |                     |
|   |                                                          | 13 Efficient removal of new CECs                                                                                                                          |                     |
|   |                                                          | 14 Treatment plant operational variables                                                                                                                  |                     |
|   |                                                          | 15 The mechanisms and optimise the main parameters related to the AOP performance for CEC removal                                                         |                     |
|   |                                                          | 16 Investigation of the removal of all ESOC groups in granular systems                                                                                    |                     |
|   |                                                          | 17 Impacts of nano-remediation                                                                                                                            |                     |
|   |                                                          | 18 Removal of Diclofenac (DCF)                                                                                                                            |                     |

|  |                                                                         | 1 |
|--|-------------------------------------------------------------------------|---|
|  | 19 Treatment efficacy: The need for additional research to identity the |   |
|  | scope and magnitude of drinking water treatment efficacy with respect   |   |
|  | to those pathogens found in drinking water                              |   |
|  | 20 Estimate removal, if any, of microbial pathogens, from source        |   |
|  | waters by currently used drinking water treatment processes under       |   |
|  | typical plant operating conditions                                      |   |
|  | 21 Identify possible candidate organisms that may be amenable to        |   |
|  | enhanced reduction or removal                                           |   |
|  | 22 Remediation- Exploiting microbes for remediation of microplastic     |   |
|  | contaminated environments:                                              |   |
|  | 23 Remediation - use of microbes for biodegradation                     |   |
|  | 24 Remediation- involving the general public, the socio-economic        |   |
|  | sectors, tourism and companies specialising in waste management.        |   |
|  | 25 Apply targeted remedial actions.                                     |   |
|  | 27 Biological perchlorate reduction – research opportunities            |   |
|  | 28 Expanding the microbial diversity for perchlorate removal            |   |
|  | 29 Bioprospecting PCRM in places could emerge as an opportunity to      |   |
|  | learn more about the different metabolic pathways involved in           |   |
|  | perchlorate respiration                                                 |   |
|  | 30 Biological perchlorate reduction in saline environments              |   |
|  | 31 Reducing perchlorate in these fertilisers could help to diminish     |   |
|  | perchlorate contamination. Biological reduction of perchlorate could    |   |
|  | help to accomplish this goal.                                           |   |
|  | 32 Perchlorate contamination also presents opportunities to study       |   |
|  | biological perchlorate reduction -This info would be helpful to design  |   |
|  | novel, sustainable and efficient pathways to remove perchlorate from    |   |
|  | sources as water or fertilisers.                                        |   |
|  | 33 There is a clear need for the development of advanced WWTP           |   |
|  | technologies to more efficiently remove /degrade PPCPs                  |   |
|  |                                                                         |   |

| 34 The various remediation technologies for the chloroacetanilide herbicides – focus of most of the studies have only been limited to the |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| reduction in the concentration of the parent compounds                                                                                    |  |
| 35 Incomplete removal of the drugs, such as ciprofloxacin, that is                                                                        |  |
| worrying due to cumulative unknown health effects when ingested over                                                                      |  |
| a long time                                                                                                                               |  |
| 36 ARVDs: a nationwide study of the presence, use pattern, material                                                                       |  |
| flow analysis and removal rate of ARVDs is necessary in order to                                                                          |  |
| estimate the load of ARVDs released into the surrounding surface and                                                                      |  |
| fresh water bodies, since ARVDs may have associated ecological risks                                                                      |  |
| to aquatic organisms                                                                                                                      |  |
| 37 Mitigation measures to minimize environmental risks: numerous                                                                          |  |
| techniques have been investigated for removal of organic ECs.                                                                             |  |
| Investigations focusing on REEs remain scarce.                                                                                            |  |
| 38 Sewer systems must be provided with modern technology to remove                                                                        |  |
| RAbs from wastewater while the surface water must be safe-guarded,                                                                        |  |
| probably by compartmentalization, from receiving runoff from                                                                              |  |
| agricultural farm without first passing through the sewer system.                                                                         |  |
| 39 Increasing the efficiency of WWTPs for diclofenac and its                                                                              |  |
| metabolites/transformation products in all environmental                                                                                  |  |
| compartments should have high priority to both protect the health of the                                                                  |  |
| population and reduce diclofenac contamination in the water cycle                                                                         |  |
| 40 Diclofenac: wastewater/sludge used for irrigation/fertilizer may                                                                       |  |
| eventually cause human toxicity through the consumption of                                                                                |  |
| diclofenac-accumalated plants. However, inefficiency of WWTPs is to                                                                       |  |
| blame for these toxicants in effluents. Hence, advanced treatments with                                                                   |  |
| low-cost solutions are needed to address to rescue WWTPs struggling                                                                       |  |
| with huge quantities of wastewaters.                                                                                                      |  |
| 41 Such emerging contaminants call for optimization of the existing                                                                       |  |
| treatment processes and introduce further and advanced treatment                                                                          |  |

| technologies including advanced oxidation (ozonation/hydrogen         |  |
|-----------------------------------------------------------------------|--|
| peroxide)                                                             |  |
| 42 Advancements in water treatment systems that prove effective in    |  |
| eliminating ECs will need to be demonstrated at full-scale to prevent |  |
| further contamination of the environment by persistent ECs            |  |
| 43 Research to improve 1,4-dioxane treatment. Considering the         |  |
| prevalent contamination in groundwater that serves as a source for    |  |
| drinking water in many contaminated sites, advancing advanced         |  |
| oxidation process technologies for smaller, modular applications are  |  |
| needed.                                                               |  |
| 44 Research should be focused on the development of hybrid systems    |  |
| for degradation and removal of these contaminants from municipal      |  |
| wastewaters                                                           |  |
| 45 Knowledge of removal of ECs in algal WWT ponds – due to            |  |
| complexity of the ecology and environmental conditions- this area of  |  |
| research is still in its infancy                                      |  |
| 46 Long HRTs in algal ponds may allow removal mechanisms with         |  |
| slow kinetics to become significant. This may for example, allow time |  |
| for hydrolysis, or biodegradation following deconjugation             |  |
| 47 Several authors have reported that photodegradation of ECs occurs  |  |
|                                                                       |  |
| in algal ponds, which is expected due to the large surface-area-to-   |  |
| volume ratios of algal ponds.                                         |  |
| However, few studies have properly isolated the significance of       |  |
| photodegradation from other removal mechanisms in algal ponds         |  |
| 48 NOM: conventional WTPs are not designed to effectively remove      |  |
| NOM.                                                                  |  |
| 49 NOM: another area of research that is rapidly gaining prominence   |  |
| in NOM removal is the use of ceramic membranes                        |  |
| 50 NOM: despite being in the formative stages of research, these      |  |
| approaches have great potential in that they can be co-opted into     |  |

| existing water treatment processes and increase the NOM removal           |  |
|---------------------------------------------------------------------------|--|
| <br>efficiency.                                                           |  |
| 51 Agricultural pesticides: this study highlights the question of the     |  |
| efficacy of existing water treatment technologies in the study areas, due |  |
| to their inability to completely eliminate EDCs during water treatment    |  |
| processes.                                                                |  |
| This suggests the need for water treatment in the indicated areas to be   |  |
| investigated                                                              |  |
| 52 Emerging organic pollutants: The results from this study show that     |  |
| wastewater treatment plants are possible sources of these organic         |  |
| pollutants and it is therefore recommended that the wastewater            |  |
| treatment plants upgrade their processes to include the removal of        |  |
| organic pollutants                                                        |  |
| 53 Emerging organic pollutants: Future studies should also look at        |  |
| degrading or completely removing organic pollutants- from the             |  |
| environment                                                               |  |
| 54 EDCs removal from wastewater: EDCs include a multitude of              |  |
|                                                                           |  |
| organic compounds with widely ranging functional groups, which            |  |
| complicates optimization of the removal of these compounds by             |  |
| wastewater treatment processe.                                            |  |
| It is apparent that other factors, apart from those already identified,   |  |
| e,g., SRT, HRT, in activated sludge processes, also play a role in the    |  |
| removal of these compounds from wastewater.                               |  |
| These unknown factors need to be identified and investigated in future    |  |
| studies.                                                                  |  |
| For activated sludge processes, important factors to consider are         |  |
| biomass morphology and sludge bacterial species diversity                 |  |
| 55 EDCs removal from wastewater: laboratory-scale experiments can         |  |
| make a significant contribution towards understanding the role that       |  |
| different variables play in the removal of EDCs.                          |  |
|                                                                           |  |

| Some of the compounds were fairly well removed in the integrated         |  |
|--------------------------------------------------------------------------|--|
| pond system and the role of anaerobic ponds needs to be evaluated.       |  |
| 56 Emerging/persistent contaminants/pathogens: research should be        |  |
| promoted on new technologies for the removal of emerging                 |  |
| contaminants from wastewater                                             |  |
| 57 Microcystin toxins: This study showed that conventional water         |  |
| treatment processes, such as pre-oxidation, coagulation, sedimentation,  |  |
| sand filtration, and chlorination, in Egyptian DWTPs were ineffective    |  |
| in the elimination of all cyanobacterial cells and/or extracellular MC   |  |
| toxins                                                                   |  |
| 58 Microcystin toxins: The presence of toxic O limnetica and/or its MC   |  |
| toxins in the final drinking water poses a risk to humans and animal     |  |
| health                                                                   |  |
| Therefore, DWTPs using such conventional treatment methods in            |  |
| Egypt and other countries necessitates alternative treatment approaches  |  |
| to remove cyanobacterial cells and their toxins                          |  |
| 59 Pharmaeuticals and personal care products: Report on the              |  |
| effectiveness of WWTPs to remove priority micro-pollutants, such as      |  |
| EDCs, as well as biological pathogens                                    |  |
| 60 Pharmaceutical and personal care products: developing more            |  |
| effective water treatment technologies to eradicate persistent micro-    |  |
| pollutants from the water system in order to deem the system safe for    |  |
| reuse.                                                                   |  |
| 61 BTEX in water: Studies have also highlighted the persistent presence  |  |
| of BTEX compounds in air, and have reported the transportation of        |  |
| these compounds from air into water bodies as a result of rainfall       |  |
| As a result, it is imperative that the remediation of these compounds in |  |
| water is prioritized in future water treatment systems                   |  |
| ······································                                   |  |

| 62 BTEX in water: Current municipal water treatment systems do not        |  |
|---------------------------------------------------------------------------|--|
| detect or treat BTEX compounds, thereby creating a risk of ingestion      |  |
| by end users of municipal-suppliedd potable water.                        |  |
| 63 BTEX in water: as occurrences of cancer-related deaths increase and    |  |
| unexplainable health defects in newborn babies rise, it is important that |  |
| future water treatment technologies focus on previously-overlooked        |  |
| pollutants such as btex compounds.                                        |  |
| 64 BTEX in water: The use of futuristic treatment materials such as       |  |
| nano-materials and tannin adsorbents could create more efficient water    |  |
| treatment systems, and reduce risks related to consumption of unclean     |  |
| water                                                                     |  |
| 65 BTEX in water: in addition to fully understanding the level of         |  |
| occurrence of these compounds in water, it is important to examine their  |  |
| chemical and physical properties, so as to better understand and          |  |
| optimize the mechanisms of remediation using emerging techniques          |  |
| and materials                                                             |  |
| 66 BTEX in water: the successful extraction and characterization of       |  |
| tannins, as well as the synthesis of tannin-based adsorbents, could       |  |
| provide a novel platform for removal of compounds such as btex in         |  |
| water, without any environmental or human health ill effects              |  |
| 67 Toxic elements: pollution control and remediation measures should      |  |
| be practiced to prevent further deterioration of water quality            |  |
| 68 Toxic elements: pollution control and remediation measures should      |  |
| be practiced to prevent further deterioration of water quality            |  |
| 69 CECS in recycling/reuse: wastewater treatment, even in best            |  |
| operational system, is not adequate                                       |  |
| 70 CECs in recycling/reuse: single advanced oxidation system, e.g.,       |  |
| UV or peroxide, is not adequate                                           |  |
| 71 CECs in recycling/reuse: need a tertiary treatment stage including     |  |
| combined advanced oxidation                                               |  |
| combined advanced oxidation                                               |  |

| 72 CECs in recycling/reuse: employ combined advanced oxidation as         |  |
|---------------------------------------------------------------------------|--|
| tertiary treatment                                                        |  |
| 73 Natural organic matter: Further development and refining of            |  |
| nanomaterials for NOM photolysis could also increase treatability of      |  |
| the various fractions of NOM                                              |  |
| 74 CECs in ww treated for direct potable reuse: evaluation of indicative  |  |
| removal potential                                                         |  |
| Since the project team was not able to collect 24 hr composite samples,   |  |
| it is difficult to evaluate the indicative removal potential of the       |  |
| treatment units since plug flow characteristics can be observed when      |  |
| taking grab samples,                                                      |  |
| 75 Microplastic pollution: While the impacts of microplastics on local    |  |
| freshwater resources are still poorly understood, better water            |  |
|                                                                           |  |
| purification, as well as strategies to reuse and recycle plastics as a    |  |
| resource stream, should receive more attention                            |  |
| This can help to minimize future negative costs and impacts               |  |
| 76 Antimicrobials/antibiotic resistant bacteria: a comprehensive study    |  |
| on antimicrobial substances removal capacity of various drinking water    |  |
| treatment configurations in operation in SA.                              |  |
| 77 Reviewing voluntary schemes to reduce pharmaceutical use               |  |
| 78 Overall reduction of diclofenac by users, increasing the efficiency    |  |
| of WWTPs and periodic monitoring of diclofenac and its                    |  |
| metabolites/transformation products in all environmental                  |  |
| compartments should have high priority to both protect the health of the  |  |
| population and reduce diclofenac contamination in the water cycle         |  |
| 79 Hence, the majority of countries from these regions are yet to reduce, |  |
| re-use or re-cycle? Plastic materials to enhance its abatement            |  |
| 80 Brominated Flame Retardants: the findings of this study can be         |  |
| incorporated into the Estuarine Management Plan and used to identify      |  |

|   |                                  | and prioritise areas of the catchment where contaminant source                                       |        |
|---|----------------------------------|------------------------------------------------------------------------------------------------------|--------|
|   |                                  | identification, reduction and control procedures should be implemented                               |        |
|   |                                  | 81 Microplastic pollution; Single –use plastics is also something that                               |        |
|   |                                  | should be reduced significantly                                                                      |        |
|   |                                  |                                                                                                      |        |
| 6 | Fate/Degradation/transformation- | 1 Further studies should be performed in order to provide a better                                   | 67     |
|   | products/tp id/metabolites       | characterisation of the transformation products of DEET, particularly                                | (5.6%) |
|   |                                  | with respect to their toxicity at low concentrations and within a mixture                            | [5]    |
|   |                                  | of trace organic contaminants                                                                        |        |
|   |                                  | 2 DCF Transformation products                                                                        |        |
|   |                                  | 3 Transformation rate - of the compounds in biota - should be taken into consideration in the future |        |
|   |                                  | 4 Transformation products - future research should emphasize the                                     |        |
|   |                                  | formation of pharmaceutical-derived disinfection by-products,                                        |        |
|   |                                  | 5 The elucidation of biotransformation pathways to inform                                            |        |
|   |                                  | toxicokinetic and effect-based assessments.                                                          |        |
|   |                                  | 6 The metabolites and transformation products formed during the                                      |        |
|   |                                  | degradation processes are yet to be explored.                                                        |        |
|   |                                  | 7 CECs in recycling/reuse: could not test for transformed secondary                                  |        |
|   |                                  | byproducts                                                                                           |        |
|   |                                  | 8 Microplastics and pharmaceuticals as drivers of antimicrobial                                      |        |
|   |                                  | resistance: factors that affect release, transformation, persistence and                             |        |
|   |                                  | transportation in surface and ground waters                                                          |        |
|   |                                  | 9 Polycyclic aromatic hydrocarbons (PAH) in aquatic ecosystems: The                                  |        |
|   |                                  | chemical analysis of the metabolized PAHs would complete the picture                                 |        |
|   |                                  | of what is happening to the parent PAHs after entering the animals                                   |        |
|   |                                  | bodies.                                                                                              |        |
|   |                                  | 10 Fate of these contaminants into the sewage biomass and their                                      |        |
|   |                                  | conversion into more toxic or pharmacologically active metabolites                                   |        |
|   |                                  | during the treatment                                                                                 |        |

| 11 Environmental fate of nano-particles (NM) need to be assessed        |  |
|-------------------------------------------------------------------------|--|
| 12 Environmental fate of NMs need to be assessed for their potential    |  |
| toxicity and bioaccumalation                                            |  |
| 13 Research to understand processes in soils and sludges                |  |
| 14 DCF fate                                                             |  |
| 15 Fate in humans                                                       |  |
| 16 Importance of further characterising the nationwide aquatic          |  |
| occurrence of those analytes whose ambient water concentrations         |  |
| appear to frequently exceed well established ECs and their pathways     |  |
| into the environment.34                                                 |  |
| 17 Occurrence: Currently, very little is known about the occurrence,    |  |
| fate and and behaviour of PPCPs in the African freshwater aquatic       |  |
| environment.                                                            |  |
| 18 Little is known about the fate of the intermediate end-products to   |  |
| date.                                                                   |  |
| 19 Environmental fate of DBDPE should be further investigated           |  |
| 20 Further investigations of the sources, fates, and health effects of  |  |
| TBBPA in China should be a huge and urgent task, mpollutant to the      |  |
| environment                                                             |  |
| 21 Moreover the transient and longterm trajectory of args in wastewater |  |
| remains unclear                                                         |  |
| 22 Fate of args and the microbial ecology of bacterial consortia in     |  |
| biofilms and their antimicrobial degradation capacity warrants further  |  |
| investigation.                                                          |  |
| 23 REEs: environmental behavior and fate: Understanding the fate        |  |
| processes REEs undergo is critical in their environmental risk          |  |
| assessments.                                                            |  |
| 24 REEs: Detailed mechanistic information on the environmental          |  |
| processes REEs undergo remains scarce                                   |  |

| 25 An ongoing research under South African Research Chairs                   |  |
|------------------------------------------------------------------------------|--|
| encompassing the presence and the fate of antibiotics                        |  |
| 26 Perform more in vitro studies to discern the fate and behavior of         |  |
|                                                                              |  |
| microplastics and their associated contaminants in the human digestive       |  |
| tract                                                                        |  |
| 27 Dedicated research is needed in order to better understand the fate       |  |
| of ECs in algal ponds. Future research in the area should focus on:          |  |
| A the effect of daily fluctuations in temperature, pH, and dissolved         |  |
| oxygen experienced on EC removal in algal ponds                              |  |
| B the influence of algal biomass on EC sorption, especially considering      |  |
| the effects of pH and temperature variations                                 |  |
| C the biodegradation of ECs by algae and algal-bacterial communities         |  |
| under conditions relevant to algal WWT                                       |  |
| D the significance of EC photodegradation in the presence of high            |  |
| dissolved and suspended solids, and the risks regarding their                |  |
|                                                                              |  |
| degradation products                                                         |  |
| 28 Apprehending the mechanisms of metal regulation by the different          |  |
| fish populations, through the analysis of metallothioneins in                |  |
| detoxification organs and/or through the analysis of genetic markers of      |  |
| metallothioneins, would also be of interest                                  |  |
| 29 Natural organic matter (NOM): their fate in the environment is an         |  |
| issue of concern                                                             |  |
| 30 Efforts to study microplastic and microfiber pollutant pathways           |  |
| should therefore include focus on communities and areas who do not           |  |
| have access to water infrastructure.                                         |  |
| 31 Agricultural chemicals: part of our uncertainty related to the effects    |  |
| of pesticides in the environment relates to the fact that the predicted fate |  |
| and transport of pesticides in the environment are not considered in the     |  |
| · ·                                                                          |  |
| South African pesticide registration process                                 |  |

| Currently the DAFF does not possess a mechanism or tools to<br>adequately assess the environmental fate of pesticides under S African<br>conditions.                                                                                                                                                                                                                                                                    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| As such DAFF is unable to estimate or predict the likelihood, and quantity, of a pesticide that can move into non-target environments.                                                                                                                                                                                                                                                                                  |  |
| 32 Alkyl phenol ethoxylates (APEs): in addition the fate and transport<br>of the longer chain NPE in the environment is still not well understood                                                                                                                                                                                                                                                                       |  |
| 334 Polycyclic aromatic hydrocarbons (PAHs): The chemical analysis<br>of the metabolized PAHs would complete the picture of what is<br>happening to the parent PAHs after entering the animals bodies.                                                                                                                                                                                                                  |  |
| 34 Agricultural chemicals: Given the chllenges related to monitoring<br>(due to the transient nature of contamination) and that pesticide<br>contamination in water resources occurs primarily as a result of<br>nonpoint sources (runoff, leaching) further research should focus on                                                                                                                                   |  |
| modelling techniques aimed at assessing the fate, transport and mitigation/management options of pesticides in water at multiple scales (field to catchment)                                                                                                                                                                                                                                                            |  |
| 35 Agricultural chemicals: research should focus on the integration of<br>these models into the risk assessment process conducted during the<br>registration of pesticides. While the registration process considers the<br>toxicity of a pesticide, there are no exposure assessment procedures<br>performed to assess the environmental fate and predicted environmental<br>concentrations under S African conditions |  |
| 36 Urban wastewater epidemiology: broaden the understanding on CEC fate:                                                                                                                                                                                                                                                                                                                                                |  |
| Metabolites (fate and risk), partitioning<br>37 The large daily and seasonable fluctuations in temperature, DO, and<br>pH commonly experienced in algal ponds should impact the rates (and<br>quantitative significance) of hydrolysis, sorption, biodegradation, and<br>photodegradation                                                                                                                               |  |

| 38 Transformation products - future research should emphasize the       |  |
|-------------------------------------------------------------------------|--|
| formation of pharmaceutical-derived disinfection by-products,           |  |
| 39 Emerging and persistent contaminants/pathogens: a systematic         |  |
| approach that simultaneously determines parent compounds,               |  |
| transformation products and degradation products is long overdue.       |  |
| 40 Emerging and persistent contaminants/pathogens: The identification   |  |
| of transformation products would lead to the possible synthesis of      |  |
| transformation products that could be used for toxicological studies    |  |
| 41 Degradation intermediates                                            |  |
| 42 Degradation pathways of halogenated contaminants                     |  |
| 43 Degradation products                                                 |  |
| 44 Degradation products - future research should emphasize the          |  |
| formation of degradates                                                 |  |
| 45 Degradation products: future research on PPCPs should not focus      |  |
| only on the parent (intact) compounds but also on their potential       |  |
| degradation products/metabolites in various matrices                    |  |
| 46 Fate of args and the microbial ecology of bacterial consortia in     |  |
| biofilms and their antimicrobial degradation capacity warrants further  |  |
| investigation.                                                          |  |
| 47 ARVDs: the degradation kinetics and breakdown products of these      |  |
| ARVDs need to be investigated                                           |  |
| 48 Biodegradation of ECs by algae has mainly been reported in lab       |  |
| studies, are based on monocultures of algae grown in specific media.    |  |
| This must be verified in wastewater                                     |  |
| 49 Due to the presence of organic compounds absorbing and scattering    |  |
| light, indirect photodegradation mechanisms should dominate over        |  |
| direct photolysis for most ECs in algal ponds, and all photodegradation |  |
| processes are likely limited to no more than 10-20cm from the surface   |  |
| 50 NOM: another potential method is photodegradation                    |  |
|                                                                         |  |

| 51 Emerging organic pollutants: Future studies should also look at degrading or completely removing organic pollutants from the environment                                                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 52 EDCs removal from wastewater: Another factor which affects accurate estimation of EDC removal is the degradation of certain compounds, e.g., estrogen E2 is converted to E1 during treatment. |  |
| Furthermore, parent compounds can break down to metabolites, which could also be endocrine-disrupting.                                                                                           |  |
| This also needs to be considered in future studies                                                                                                                                               |  |
| 53 Emerging and persistent contaminants/pathogens: A systematic                                                                                                                                  |  |
| approach that simultaneously determines parent compounds,                                                                                                                                        |  |
| transformation products and degradation products is long overdue.                                                                                                                                |  |
| 54 BTEX in water: the possible degradation of BTEX compounds to                                                                                                                                  |  |
| useful intermediates or harmless end-products can also be achieved by                                                                                                                            |  |
| synthesizing materials that include degradation catalysts in the form of                                                                                                                         |  |
| highly reactive nanoparticles                                                                                                                                                                    |  |
| 55 Agricultural chemicals: While the analytical approach adopted in                                                                                                                              |  |
| this study catered for a large number of different pesticides, it is                                                                                                                             |  |
| important to note that glyphosate (most heavily applied pesticide in the                                                                                                                         |  |
| country) was not included in screening or quantitative analysis.                                                                                                                                 |  |
| Considering its high quantity of use as well as increasing evidence of                                                                                                                           |  |
| human health-related effects, future research should focus on                                                                                                                                    |  |
| developing analytical methods for detection of this pesticide (and its                                                                                                                           |  |
| breakdown products) in water resources in S Africa                                                                                                                                               |  |
| 56 The large daily and seasonable fluctuations in temperature, DO, and                                                                                                                           |  |
| pH commonly experienced in algal ponds should impact the rates (and                                                                                                                              |  |
| quantitative significance) of hydrolysis, sorption, biodegradation, and                                                                                                                          |  |
| photodegradation                                                                                                                                                                                 |  |

| However, little is known on whether BFRs are widespread and                 |  |
|-----------------------------------------------------------------------------|--|
| significant contaminants of sediment and biological tissue in South         |  |
| <br>African coastal ecosystems, a situation that warrants further attention |  |
| 57 Behaviour of human originated metabolites and biodegradation             |  |
| 58 Human originated metabolites: prevalence, fate, treatment                |  |
| 59 Challenges with metabolites                                              |  |
| 60 Occurrence: Currently, very little is known about the occurrence,        |  |
| fate and and behaviour of PPCPs in the African freshwater aquatic           |  |
| environment.                                                                |  |
| 61 Degradation products: future research on PPCPs should not focus          |  |
| only on the parent (intact) compounds but also on their potential           |  |
| degradation products/metabolites in various matrices                        |  |
| 62 There are no documented data on the levels of ARV metabolites in         |  |
| wastewater                                                                  |  |
| 63 ARVDs: future work should include metabolites in order to assess         |  |
| their environmental impact.                                                 |  |
| 64 Quantification of potential risks of their ENMs metabolites –            |  |
| unquantified to date                                                        |  |
| 65 Emerging organic pollutants: The metabolites of pesticides, PCBs,        |  |
| pharmaceuticals and personal care products, and musk ketones should         |  |
| also be analysed as most of these pollutants may be broken down into        |  |
| other compounds in the environment or as it passes through the human        |  |
| body                                                                        |  |
| 66 Pharmaceutical and personal care products: further reports on the        |  |
| occurrences of PPCPs and their metabolites in surface waters                |  |
| 67 Urban wastewater epidemiology: broaden understanding on CEC              |  |
| presence, fate risk:                                                        |  |
| Metabolites (fate and risk), partitioning                                   |  |
|                                                                             |  |
|                                                                             |  |

| 7 | Distribution/spatial-temporal variability/occurrence | 1 Distribution in environment                                             | 58<br>(4.8%) |
|---|------------------------------------------------------|---------------------------------------------------------------------------|--------------|
|   | variability/occurrence                               |                                                                           | [6]          |
|   |                                                      | 2 Distribution: Multigenerational studies in a variety of species         |              |
|   |                                                      | sufficient for reliable estimation of species sensitivity distributions   |              |
|   |                                                      | 3 Available of data - Data on the nationwide distribution of most of our  |              |
|   |                                                      | analytes is sparse,                                                       |              |
|   |                                                      | 4 Survey of perchlorate in the environment (water supply, soil, indoor    |              |
|   |                                                      | dust) and in food, prioritising areas with high levels of perchlorate, is |              |
|   |                                                      | an important first step towards determining exposure levels and           |              |
|   |                                                      | possible standards for drinking water and food products.                  |              |
|   |                                                      | 5 Currently very little is known about the levels of PPCPs in biota in    |              |
|   |                                                      | general. Few studies have investigated PPCP residues in fish, birds,      |              |
|   |                                                      | mammals.                                                                  |              |
|   |                                                      | 6 Seasonal variability- there appears gaps in knowledge about seasonal    |              |
|   |                                                      | variability in concentrations of commonly and consistently detected       |              |
|   |                                                      | PPCPs in the aquatic environment                                          |              |
|   |                                                      | 7 Tissue specific distribution should also be determined, where           |              |
|   |                                                      | possible,                                                                 |              |
|   |                                                      | 8 In the future, studies on POPs in the sediment of this river should     |              |
|   |                                                      | focus on their distribution according to particle sizes of the sediment   |              |
|   |                                                      | and comparison of depth and surface sediment concentrations               |              |
|   |                                                      | 9 PCBs: Most of the PCBs are bound to the soil and sediments and may      |              |
|   |                                                      | be released to the water slowly over a long period of time                |              |
|   |                                                      | 10 Alkyl phenol ethoxylates: within effluent studies, as these pollutants |              |
|   |                                                      | are directly linked to urbanization, the impact of population increase in |              |
|   |                                                      | metropolitan areas need to be assessed for APEs pollution                 |              |
|   |                                                      | 11 Organochlorine pesticides: In the future, studies on POPs in the       |              |
|   |                                                      | sediment of this river should focus on their distribution according to    |              |

| <ul> <li>particle sizes of the sediment and comparison of depth and surface sediment concentrations</li> <li>12 Antimicrobials/antibiotic resistant bacteria: the presence, distribution and dynamics of antibiotic resistance genes in the ARBs be investigated</li> </ul> |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 13 Spatial mapping of SUGEs ((serpentinitic ultramafic geological<br>environments.) hotspots in Africa at a country level using remote<br>sensing including drones and spatial analysis tools (eg, GIS,<br>geostatistics)                                                   |  |
| 14 Genetic diversity of the Tunisian pearl millet across different<br>agroecological zones could probably interfere on its vulnerability to<br>mycotoxins infestation within regions                                                                                        |  |
| 15 Further investigation of future and possibly retrospective trends and<br>behavior with a focus on annual variations of eg, SCCPs, PCNs,<br>PBDEs, PFSAs, and PFCAs in polar bears are needed                                                                             |  |
| 16 Strong regional variations in the concentrations of HNPs (halogenated natural products) are frequently observed                                                                                                                                                          |  |
| 17 PAH, PCB, OC pesticide: there are significant sources of PCBs in<br>highly urbanized and industrialised catchments in the eThekwini area,<br>as reflected in concentrations of these chemicals analysed in sediment<br>for this study                                    |  |
| A more comprehensive assessment of the spatial extent and magnitude<br>of contamination of sediment by these should be performed, for the<br>purpose of source identification, reduction and control.                                                                       |  |
| 18 Fluoride in water: The distribution of fluoride concentrations in<br>Namibias groundwater was not assessed in relation to the spatial<br>distribution of human population.                                                                                               |  |

| 19 CECs There is a need to conduct a national monitoring programme<br>in order to obtain the spatial distribution of these emerging<br>contaminants                                                                                   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 20 Environmental occurrence                                                                                                                                                                                                           |  |
| 21 Occurrence of waterborne pathogens - major gap                                                                                                                                                                                     |  |
| 22 Comprehensive data on perchlorate in environment and food sources is needed                                                                                                                                                        |  |
| 23 Occurrence: Currently, very little is known about the occurrence, fate and and behaviour of PPCPs in the African freshwater aquatic environment.                                                                                   |  |
| 24 Occurrence: reliable measurement of trace levels of contaminants across different environmental compartments (water, sediment, biota – of which biota has been largely neglected).                                                 |  |
| 25 Occurrence: limited data on tissue concentrations exist                                                                                                                                                                            |  |
| 26 ERY occurrence data is comparatively limited in coastal and marine<br>systems across large geographic regions including South-West Asia,<br>Eastern Europe, Africa and Central and South America.                                  |  |
| 27 Environmental occurrence information was more readily available for water matrices than for solids and wildlife.                                                                                                                   |  |
| 28 The occurrence of fecal contamination indicators is frequently not correlated with the presence of other pathogenic microorganisms that may inhibit sewage sludge and survive the treatment process                                |  |
| 29 There are no known reports from Africa in the open literature on the occurrence of azole antifungals in the aquatic environment, except this one                                                                                   |  |
| 30 Information about occurrence of firstline antI-tubercular compounds<br>in SA water bodies is lacking despite the fact that several hundred<br>kilograms of the drugs are administered daily in order to control the TB<br>epidemic |  |

| 31 Anti TB drugs: the occurrence of co-trimoxazole in municipal          |  |
|--------------------------------------------------------------------------|--|
| wastewater has also been sparsely studied In SA                          |  |
| 32 As with wastewater and surface water, there is no data on             |  |
| occurrence of firstline anti- tubercular drugs in sediments in SA        |  |
| 33 Most anti microbial drugs are perpetually replaced in aquatic         |  |
| environment due to their continued use. Their occurrence and             |  |
| persistence in the aquatic environment is of great concern as far as     |  |
| balanced aquatic ecosystems and public health impacts are concerned      |  |
| 34 Programs in different environmental systems including sediments       |  |
| and pore water as well as studies on their chronic toxicity to different |  |
| taxa. Such screening models can allow the identification of hot spots    |  |
| and ultimately aid to develop appropriate and corrective strategies for  |  |
| specific situations and locales.                                         |  |
| 35 ARVDs: a nationwide study of the presence, use pattern, material      |  |
| flow analysis and removal rate of ARVDs is necessary in order to         |  |
| estimate the load of ARVDs released into the surrounding surface and     |  |
| fresh water bodies, since ARVDs may have associated ecological risks     |  |
| to aquatic organisms                                                     |  |
| 36 An ongoing research under South African Research Chairs               |  |
| encompassing the presence and the fate of antibiotics                    |  |
| 37 Diclofenac: soils and sediments are the least understood              |  |
| compartments on earth                                                    |  |
| 38 There are a few constraints to minimize the factors known to          |  |
| influence the occurrence of diclofenac: increased consumption, direct    |  |
| discharge of household wastewater, global warming, climate change,       |  |
| and inefficiency of WWTPs. The pattern of diclofenac usage has grown     |  |
| exponentially; thus, we must consider all options to reduce the entry of |  |
| this pollutant in our waste stream.                                      |  |
| 39 With increasing number of studies detecting pharmaceuticals in        |  |
| groundwater bodies, the question concerning antibiotic resistance and    |  |

| proliferation of compounds in the aqueous environment should concern    |  |
|-------------------------------------------------------------------------|--|
| us                                                                      |  |
| 40 The number of chemicals produced and consumed rises every day        |  |
| and new info about their consequences in the environment are            |  |
| discovered                                                              |  |
| Therefore, priority lists must be updated periodically and should be    |  |
| always based on up-to-date information and data (occurrence,            |  |
| determination, toxicology) obtained in the country or target area.      |  |
| 41 Variety and co-occurrence of Alternaria and Fusarium emerging        |  |
| mycotoxins in Tunisian pearl millet might postulate the presence of     |  |
| several mycotoxigenic fungal species                                    |  |
| 42 Genetic diversity of the Tunisian pearl millet across different      |  |
| agroecological zones could probably interfere on its vulnerability to   |  |
| mycotoxins infestation within regions                                   |  |
| 43 The occurrence of HNPs is difficult to predict and differs from the  |  |
| environmental distribution of POPs                                      |  |
| 44 So far, little information existed on the occurrence of HNPs in      |  |
| marine regions in Africa                                                |  |
| 45 HNPs were more abundant than anthropogenic POPs in chokka            |  |
| squid from 3 marine sites off of S Africa                               |  |
| 46 In chokka squid, different distributions of HNPs between the 3 sites |  |
| at South Africa suggest differences in HNP producers, therefore         |  |
| confounding the predictions of the occurrence and concentrations of     |  |
| HNPs in the marine environments                                         |  |
| 47 Differences between samples from the Indian site and Atlantic ocean  |  |
| were also noticed for PCB153 and PCB 138.                               |  |
| 48 Pesticides: the capacity to determine environmental concentrations   |  |
| of pesticides is urgently needed in South Africa                        |  |
|                                                                         |  |

|        | cated but affordable, analytical facilities are needed to validate<br>ing concentrations as well as environmental concentrations of |
|--------|-------------------------------------------------------------------------------------------------------------------------------------|
| pestic | 0                                                                                                                                   |
| 49 E   | Brominated Flame Retardants: a collaborative study identified                                                                       |
|        | ficant widespread brominated flame retardant contamination of                                                                       |
|        | nent in eThekwini area                                                                                                              |
|        | s are persistent, bioaccumulative and lipophilic, with the result that                                                              |
|        | may pose similar ecological and human risks to PCBs                                                                                 |
|        | ever, little is known on whether BFRs are widespread and                                                                            |
|        | ficant contaminants of sediment and biological tissue in South                                                                      |
|        | an coastal ecosystems, a situation that warrants further attention                                                                  |
|        | Emerging chemical pollutants: The literature review regarding                                                                       |
|        | rrence information surrounding ECPs in S African water bodies                                                                       |
|        | ound that there is limited data available in this country                                                                           |
|        | uch, the creation of a database that contains pertinent information                                                                 |
|        | unding the occurrence, toxicity (especially chronic), persistence                                                                   |
|        | bioaccumulative potential of all ECPs would provide an invaluable                                                                   |
|        | arce from both a scientific and environmental point of view. This                                                                   |
|        | base should be in the public domain and scientists from across the                                                                  |
|        | try should be granted easy access to it.                                                                                            |
|        | arbapenem-resistant Gram-negative bacteria are mainly studied as                                                                    |
|        | se of human infections, while reports regarding the occurrence of                                                                   |
|        | e carbapenem-resistant bacterial populations (CRBP) outside                                                                         |
|        | cal institutes are globally scarce.                                                                                                 |
|        | on-steroidal anti-inflammatory drugs: Although there is enough                                                                      |
|        | ence on the occurrence of them in European water bodies, their                                                                      |
|        | ence in SA environment is not fully known                                                                                           |
|        | on steroidal anti-inflammatory drugs: Relatively few published                                                                      |
| repor  | ts on the occurrence of them in SA WWTPs have emerged                                                                               |

|   |      | 54 Alkyl phenol ethoxylates: Though these studies confirmed NP as the<br>major product, more information on the behaviour and degradation of<br>the longer chain NPE6-16 in different environmental matrices and biota<br>becomes of utmost importance55 Pharmaceutical and personal care products: further reports on the<br>occurrences of PPCPs and their metabolites in surface waters56 BTEX in water: research trends indicate that there is still room for |                     |
|---|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|   |      | so BTEX in water: research trends indicate that there is still room for<br>more studies to be conducted on the occurrence of btex compounds in<br>various water systems, as well as to examine future treatment<br>techniques that can help alleviate unpleasant health effects and possibly<br>reduce water-related deaths                                                                                                                                       |                     |
|   |      | 57 Microplastics and pharmaceuticals as drivers for antimicrobial<br>resistance: Microplastics in ground-and tap waters<br>58 Urban wastewater epidemiology: 2 broaden understanding on CEC                                                                                                                                                                                                                                                                       |                     |
|   |      | presence:                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
|   |      | Drinking Water Equivalent Levels (DWEL ADI)                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| 8 | Data | 1 Data collection on antimicrobial use, in livestock is scarce,                                                                                                                                                                                                                                                                                                                                                                                                   | 51<br>(4.2%)<br>[7] |
|   |      | 2 Develop standardised techniques for data collection and sharing on microplastics                                                                                                                                                                                                                                                                                                                                                                                |                     |
|   |      | 3 Data collection and sharing especially across transboundary catchments                                                                                                                                                                                                                                                                                                                                                                                          |                     |
|   |      | 4 Data collection for less developed countries where information is<br>sparse, impacts are not well understood and monetary values (costs of<br>agricultural water pollution) have not been assigned                                                                                                                                                                                                                                                              |                     |
|   |      | 5 Data collection                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |

| 6 Completeness of reported data - varied levels                           |  |
|---------------------------------------------------------------------------|--|
| 7 Access to data                                                          |  |
| 8 Lack of data                                                            |  |
| 9 Data base for monitoring data                                           |  |
| 10 Publication of full data sets                                          |  |
| 11 Data- other researchers to collect data and further investigate this   |  |
| important issue                                                           |  |
| 12 Data- cross sectional data set - not available                         |  |
| 13 Data- The availability of detailed panel sets for mismanaged plastic   |  |
| waste will allow the use of more advanced techniques such as              |  |
| decomposition analysis                                                    |  |
| 14 Availability of data                                                   |  |
| 15 Data - on plastics pollution                                           |  |
| 16 Data review/re-evaluation- data should be re evaluated as health       |  |
| reference guidelines for additional PFAS analytes (both individual        |  |
| <br>compounds and mixtures) are determined                                |  |
| 17 Toxicity data: A significant challenge to estimating Hazard            |  |
| Quotients/HQs is the sparseness (or absence) of directly measured data    |  |
| available for estimating potential ecological effect concentrations       |  |
| (ECs).                                                                    |  |
| 18 EC data: Lack of EC data for many of the analytes studied in this      |  |
| study, incomparability of available EC types for different analytes       |  |
| 19 Data on the nationwide distribution of most of our analytes is sparse, |  |
| 20 Time profiles of analyte concentrations are particularly rare.         |  |
| 21 Inactivation or removal of waterborne pathogens during water           |  |
| treatment - lack of data                                                  |  |
| 22 Occurrence- Environmental occurrence data from megacities and          |  |
| developing continents is lacking                                          |  |

| 23 Occurrence- Environmental occurrence of antihistamines in coastal      |  |
|---------------------------------------------------------------------------|--|
| and marine systems was limited and monitoring data from Africa and        |  |
| South America were largely lacking                                        |  |
| 24 Comprehensive data on perchlorate in the environment and food          |  |
| sources is needed                                                         |  |
| 25 Data on contamination level of EBFR in China and even the world        |  |
| is still severly limited                                                  |  |
| 26 Data on the occurrence of ARVDs in wastewater and environmental        |  |
| samples are still relatively limited                                      |  |
| 27 There are no documented data on the levels of ARV metabolites in       |  |
| wastewater                                                                |  |
| 28 In addition to the scarcity of commercially available standards for    |  |
| ARVD metabolites, complicated method development for target               |  |
| analytes of diverse physico-chemical properties likely contributes to the |  |
| limited data                                                              |  |
| 29 Lack of MECs data in South Africa is a major issue; as a result it     |  |
| was not feasible to ascertain the accuracy of the estimated PECs based    |  |
| on several proposed ranking criteria frameworks                           |  |
| 30 Lack of market penetration data for products containing TCS and        |  |
| TCC – for SA and global- makes it difficult to compare and refine the     |  |
| model results in this study                                               |  |
| 31 POPs: lack of human animal and wildlife exposure data. There is no     |  |
| data for various matrices including indoor and outdoor air exposure       |  |
| assessment in workplaces/homes, cored sediments, ground and bore-         |  |
| hole water, wildlife-avian population data, amongst others; to address    |  |
| these knowledge gaps, further studies would be required.                  |  |
| 32 POPs: Of high importance would be human exposure studies which         |  |
| could include collection of serum and breastmilk samples from             |  |
| vulnerable groups, occupationally exposed workers, and the general        |  |
| population. Analyses of these samples should ideally be coupled with      |  |
| population. Analyses of these samples should ideally be coupled with      |  |

| dietary patterns, and workplace/home exposure hazards in questionnaires to clearly correlate POP conc with socio-demographic characteristics.                                                                                                                                                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 33 SSRIs: Data was scarce or non-existent for South America and Africa, indicating potential risks for SSRIs to aquatic life in those regions requires further attention                                                                                                                                     |  |
| 34 The scarcity of centralized and easily accessable data for most products is an issue, in particular for emerging contaminants.                                                                                                                                                                            |  |
| 35 It is up to the scientific community to clearly impress the importance<br>of monitoring networks and the upkeep and development of long-term<br>data sets on decision makers, while prioritizing the need for installation<br>and maintenance of measuring systems in the face of resource<br>constraints |  |
| 36 Low number of data regarding WWTPs and hospital effluents is concerning, since their effluents are considered the main source of emerging contaminants into aquatic environments.                                                                                                                         |  |
| 37 Increased efforts towards integrating data and observations of<br>reproductive anomalies in wild populations exposed to emerging<br>contaminants and endocrine disrupting substances like pesticides, are<br>recommended                                                                                  |  |
| 38 Metal elements: more data are needed on elemental levels in marine<br>turtles, supplemented with persistent organic pollutant analyses that<br>normally have much slower turnover in bodies than metals and<br>metalloids to discriminate between demes.                                                  |  |
| 39 Data on organic contaminants will also be very useful<br>As newer types of persistent organic pollutants such as brominated<br>flame retardants and perfluorinated compounds have been detected in<br>African penguin Spheniscus demersus eggs from South African coast                                   |  |
| 40 There are no data regarding the concentration of clinically important carbapenem-resistant bacteria in riverine ecosystems                                                                                                                                                                                |  |

| 41 BMAA: in the absence of conclusive data on the possible exposure<br>routes and experimental validation of the ALS/PDS theory, it seems<br>prudent to take measures, such as the placement of warning signs, to<br>prevent any exposure                                                                                                                                                                                     |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 42 Engineered nanomaterials: Further research is required to generate<br>experimental data at micro- and macrocosm levels where natural<br>conditions are simulated.                                                                                                                                                                                                                                                          |  |
| Data from these experiments could support scientific findings and<br>support better management decisions on environmental risks through<br>modelling                                                                                                                                                                                                                                                                          |  |
| 43 Emerging chemical pollutants: The literature review regarding<br>occurrence information surrounding ECPs in S African water bodies<br>has found that there is limited data available in this country                                                                                                                                                                                                                       |  |
| As such, the creation of a database that contains pertinent information<br>surrounding the occurrence, toxicity (especially chronic), persistence<br>and bioaccumulative potential of all ECPs would provide an invaluable<br>resource from both a scientific and environmental point of view. This<br>database should be in the public domain and scientists from across the<br>country should be granted easy access to it. |  |
| 44 Aquatic toxicity testing: DWS need to be engaged as regards storage<br>of data generated by the IWUAB toolkit and its application in Water<br>Use licensing                                                                                                                                                                                                                                                                |  |
| 45 ARB and genes in drinking water: Furthermore, with such substantial data being gathered in the current study, there is a need to link WGS data to inhibition zone analysis data.                                                                                                                                                                                                                                           |  |
| This will not only give insight into the world of these identified<br>bacterial species, but will also make it possible to trace their lineage and<br>possibly find innovative remediation solutions.                                                                                                                                                                                                                         |  |
| The Whole Genome Sequencing will provide and overview of ARGs associated with target genera                                                                                                                                                                                                                                                                                                                                   |  |

|         | 46 Metals: There is limited published data about metal concentrations         |  |
|---------|-------------------------------------------------------------------------------|--|
|         | in coastal water and surface sediment in Cape Town                            |  |
|         | 47 Non steroidal anti inflammatory drugs: This study is based on the          |  |
|         | determination of selected NSAIDs in Umbilo and Kingsburgh WWTPs               |  |
|         | 48 It is further recommended that regular updates of pesticide use data,      |  |
|         | spatial crop distribution and associated pesticide use maps are produced      |  |
|         | to ensure the availability of up to date information for use in design of     |  |
|         | monitoring programmes and risk assessment studies                             |  |
|         | 49 Agricultural chemicals: data on physicochemical properties of              |  |
|         | pesticides in South African environmental conditions are not available.       |  |
|         | International databases were therefore consulted in order to obtain the       |  |
|         | relevant data for- calculation of mobility (GUS) index, Studies have          |  |
|         | shown that physicochemical properties of pesticides can vary                  |  |
|         | geographically, depending on local climatic and soil conditions.              |  |
|         | 50 CECs in wastewater treated for direct potable reuse: process               |  |
|         | performance and plant reliability analysis                                    |  |
|         | Overall, the current historical process data is not suited as is for deriving |  |
|         | process monitoring models                                                     |  |
|         | However, there is scope, given rigorous data collection programmes,           |  |
|         | for univariate monitoring of key quality variables 9slow sample rates),       |  |
|         | or multivariate monitoring of operational variables (fast sample rates        |  |
|         | A future direction for statistical analysis is to consider how process unit   |  |
|         | reliabilities affect other process unit reliabilities, and in turn, the       |  |
|         | reliability of the entire plant under consideration.                          |  |
|         | For this, multivariate and conditional distribution fitting would be          |  |
|         | required, which would require rigorous data collection at a high data         |  |
|         | quality                                                                       |  |
|         | 51 Antimicrobials/antibiotic resistant bacteria: data from such studies       |  |
|         | be used to determine if mitigation is necessary and if so, which              |  |
| · · · · |                                                                               |  |

|   |            | strategies could be used or developed that would be appropriate for<br>local conditions                                                                                                                                                                                                     |                     |
|---|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 9 | Regulation | 1 Regulation: lack of regulations on the concentration limits of ESOC<br>in the environment                                                                                                                                                                                                 | 51<br>(4.2%)<br>[7] |
|   |            | 2 Regulation There is no official guideline limit available for drinking water                                                                                                                                                                                                              |                     |
|   |            | 3 DCF regulation                                                                                                                                                                                                                                                                            |                     |
|   |            | 4 Regulation on Use of drugs                                                                                                                                                                                                                                                                |                     |
|   |            | 6 Apart from unregulated mycotoxins, defined as emerging mycotoxins, Fusarium and Alternaria emerging mycotoxins were the most prevalent in this study                                                                                                                                      |                     |
|   |            | 7 Variety and co-occurrence of Alternaria and Fusarium emerging<br>mycotoxins in Tunisian pearl millet might postulate the presence of<br>several mycotoxigenic fungal species                                                                                                              |                     |
|   |            | This pose threat to consumer health due to their cytotoxic and<br>mutagenic effects leading to chronic diseases, although no legislations<br>have been established yet.                                                                                                                     |                     |
|   |            | 8 Overall, the overlap environmental conditions corresponding to the climate factors, harvesting periods, poor storage and transport conditions, wrong handling and agriculture practices might trigger fungal proliferation and exacerbate mycotoxins production in Tunisian pearl millet. |                     |
|   |            | Additionally, grain damage mainly due to insects invasion, might induce greater fungal ingress and mycotoxin production.                                                                                                                                                                    |                     |
|   |            | Thus, its critical to increase awareness by implementing preventive<br>strategies, proper and adequate agriculture practices that would mitigate<br>mycotoxins issue in food and feed commodities especially, that in                                                                       |                     |

| Tunisia, pearl millet crop is usually cultivated in harsh conditions by                                                                         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul><li>smallholder subsistence farmers.</li><li>9 Mycotoxin risk assessment in Tunisian pearl millet revealed a</li></ul>                      |  |
| worrisome situation that have to be faced by setting up strenuous                                                                               |  |
| regulatory thresholds and a strict control system within the food and                                                                           |  |
| feed trade, in order to prevent and narrow mycotoxins as a major issue<br>requiring priority attention                                          |  |
| the current regulations mostly take account about major mycotoxins                                                                              |  |
| namely AFs, OTA, DON, ZEA, FBs and scarcely about emerging                                                                                      |  |
| mycotoxins and derivatives produced by several fungi occurring in food<br>and feed                                                              |  |
| 10 Consequently the undeniable toxicological effects on human and                                                                               |  |
| animals health associated to a mixture of toxic metabolites exposure,                                                                           |  |
| highlighted the obvious challenge to widen the legislations in order to<br>encompass further mycotoxins with respect to the food consumption    |  |
| patterns                                                                                                                                        |  |
| 11 There is a need to control and reduce the release of PBDEs and other                                                                         |  |
| POPs in Nigeria and other developing countries at the end of life of                                                                            |  |
| consumer products, to avoid further environmental contamination,                                                                                |  |
| safeguard free-range cattle and chicken breeding and reduce or prevent                                                                          |  |
| human exposure to these chemicals                                                                                                               |  |
| 12 PCBs: Hence there is a need for strict control and regulations on the                                                                        |  |
| use and safe disposal of these organic chemicals in order to safeguard<br>the health of the inhabitants of the communities in the neighbourhood |  |
| of the river                                                                                                                                    |  |
| 13 Agricultural chemicals: while a trigger value has been                                                                                       |  |
| recommended there is no standardized method or guideline to assess                                                                              |  |
| human health risks associated with endocrine disrupting chemicals, an                                                                           |  |
| area which requires further research                                                                                                            |  |
| 14 EDCs: Currently there is no trigger value available for thyroid                                                                              |  |
| activity in drinking water.                                                                                                                     |  |

| 15 EDCs: Although a trigger value of 11 ng dihydrotestosterone             |  |
|----------------------------------------------------------------------------|--|
| equivalent/L has been proposed by Brand et al (2013), it may be            |  |
| necessary to adapt this value for South African conditions.                |  |
| 16 PCB residue: Therefore, regulatory implementation for monitoring        |  |
| of wastewater emissions into this lake need to be implemented, as this     |  |
| is suspected to be the primary source of PCBs in the NE Lake               |  |
| 17 It was an observation during this project that many authorisations      |  |
| and licenses granted failed to include the constituents relevant to the    |  |
| process involved.                                                          |  |
| The inclusion of all the relevant constituents that are linked to the      |  |
| agricultural activity in question must be included in any licence or       |  |
| authorisation granted.                                                     |  |
| Establishing these lists for organic and inorganic constituents remains    |  |
| a fundamental research priority that will allow for appropriate            |  |
| monitoring, assessment and thus management thereof                         |  |
| 18 Agricultural chemicals: it is also acknowledged that a revision of      |  |
| the 1996 SA water Quality Guidelines is underway with the irrigation       |  |
| volume being addressed first                                               |  |
| It is argued that both Domestic and Animal Watering sections also          |  |
| urgently require revision to align with risk-based approaches that are     |  |
| necessary to appropriately assess and manage the hazards and risks         |  |
| present                                                                    |  |
| 19 Microplastic pollution: due to lack of standardized units to report the |  |
| concentration of microplastics in the environment, it is at this stage     |  |
| difficult to compare results                                               |  |
| 1 Regulation-no systematic legal control over their discharge and/or       |  |
| environmental levels of pharmaceutical residues has been setup yet         |  |
| 2 Standardised procedures for EPV- there are no formalized                 |  |
| implementation model and sophisticated methods in practise u to now.       |  |
| implementation model and sophisticated methods in practise u to now.       |  |

| 3 It is proposed that it is urgent to implement EPV targeting ketoprofen |  |
|--------------------------------------------------------------------------|--|
| pollution:                                                               |  |
| 4 Determining exposure levels and possible standards for drinking        |  |
| water and food products.                                                 |  |
| 5 A risk assessment could be used to develop a standard for perchlorate  |  |
| in drinking water.                                                       |  |
| 6 More importantly, critical limits of TBBPA must be set to restrict     |  |
| unnecessary release of this                                              |  |
| 7 Restrictions on environmental releases and continued monitoring are    |  |
| still essential in China, where studies on BFRs, especially non-PBDEs    |  |
| BFRs, remain limited relative to its important role in the BFR market    |  |
| 8 Threats of new sludge contaminants should lead to stronger limits      |  |
| considering the direct use of sewage sludge as a fertiliser on land      |  |
| 9 To make a firm recomm.endation on TAF (total aflatoxin) in the         |  |
| cereal based products, further research is required                      |  |
| 10 Scientists who are using mussel sentinels to perform compliance       |  |
| monitoring in coastal waters must from a regulatory standpoint use fish- |  |
| based biota EQSs as assessment criteria for classifying their mussel-    |  |
| based monitoring data                                                    |  |
| 11 Internationally agreed pollution assessment criteria for mussel       |  |
| sentinels are largely lacking                                            |  |
| 12 Prioritization of what ECs need to be regulated in the environment    |  |
| <br>will become important,                                               |  |
| 13 Setting new standards for the quality of wastewater treatment plants  |  |
| as well as mandating the authorities of water management systems to      |  |
| integrate the municipal, agricultural and industrial water consumers in  |  |
| a closed cycle can simultaneously solve the problems of freshwater       |  |
| scarcity and environmental pollution in long-term                        |  |
| 14 The PFOS concentration in fillets exceeded the human screening        |  |
| values for cancer risk in certain species and locations                  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15 Non-perrennial rivers: In consequence, intermittent rivers are            |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | particularly vulnerable in many parts of the world because of a lack of      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | legislation, and therefore a lack of adequate management practices,          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | protecting them and their waters                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16 PAH, PCB, OC: sediment quality guidelines provide a useful tool           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | for screening contaminant concentrations in sediment so as to prioritise     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sites that require further attention, eg, thro biological assessment         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | There are sediment quality guidelines for organic chemicals in SA            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | freshwater and coastal ecosystems, and the only metal guidelines are         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | those used t for determining whether sediment identified for dredging        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in SA ports is of a suitable quality for openwater disposal                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Because of this lack of sediment quality guidelines there is no              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | consistency in the use of international sediment quality guidelines by       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SA researcher                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | There is therefore a need to define sediment quality guidelines for          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | freshwater and coastal ecosystems in SA                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17 Aquatic toxicity testing: package finalization should be undertaken       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in a process that engages DWS Staff. The recommended compliance              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | criteria were highlighted as an area that needs rethought.                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | This process should engage legal input in order to produce legally           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | defensible compliance criteria.                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Engaging DWS staff with appropriate seniority will aid in adoption and       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | utilization of the IWUAB toolkit                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18 Aquatic toxicity testing: the potential of setting criteria for effluent, |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rather than the resource, needs reconsideration                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19 Aquati toxicity testing: once the IWUAB toolkit has been finalized        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | to a level required by DWS, it should be adopted to provide support for      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the use of toxicological testing in Water Use Licensing in order that all    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tools to appropriately manage resource quality are in use.                   |  |
| here a second seco |                                                                              |  |

|                                                                          | 1 |
|--------------------------------------------------------------------------|---|
| 20 Fluorescent sensors for screening ECP in water: the development of    |   |
| South African guideline values or water quality limits for ECPs should   |   |
| receive attention from policy makers in order to safeguard human health  |   |
| 21 CECs in recycling/reuse: include limits for indicator ECs in          |   |
| drinking water guidelines                                                |   |
| 22 CECs in recycling/reuse: make WWTW discharge standards stricter       |   |
| 23 Agricultural chemicals: The risk a pesticide poses to human health    |   |
| (and aquatic environment) is dependent on a number of factors,           |   |
| including relative toxicity of the chemical, relative mobility (as       |   |
| influenced by physicochemical properties), recommended application       |   |
| rates (quantity of use) and agricultural practices (correct use of       |   |
| nozzles).                                                                |   |
| As farmers almost always have a choice of different chemicals to target  |   |
| a specific pest on a specific crop, it is recommended that a manual      |   |
| providing guidelines on choosing agricultural chemicals that minimise    |   |
| effects in non-target environments (both human and ecological health)    |   |
| be produced                                                              |   |
| 24 Reclamation of municipal wastewater to potable standard: standards    |   |
| for drinking water quality from indirect potable reuse (IPR) and DPR     |   |
| (direct potable reuse) plants should be included in the sans 241         |   |
| guidelines as a separate section for water reclamation plants producing  |   |
| drinking water                                                           |   |
| 25 Reclamation of municipal wastewater for drinking water: DWS           |   |
| should use the info provided in this report to adopt and implement       |   |
| standards for direct and indirect potable reuse in SA as a high priority |   |
| 26 Reclamation of municipal wastewater for drinking purposes:            |   |
| Regulation of IPR and DPR plants should be included in, and given        |   |
| specific attention to, in both the Blue Drop program, as well as the     |   |
| Green Drop program (for wastewater treatment plants supplying reuse      |   |
| plants with secondary or tertiary treated wastewater)                    |   |
| <b>r</b>                                                                 |   |

|    |                                         | 27 Microplastic pollution: Often these contaminants are largely unregulated                                                                                                                                                                                                                                                                                             |                     |
|----|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|    |                                         | 28 Microplastic pollution: The aim would be not to ban plastics, like an international treaty, but that countries need to adhere to an international negotiated set of standards and practices to protect human health and the environment                                                                                                                              |                     |
|    |                                         | 29 1,4 -dioxane: research to establish a health-based drinking water targets.                                                                                                                                                                                                                                                                                           |                     |
|    |                                         | <ul> <li>30 The implementation of the guidelines (monitoring cyanobacterial blooms) and accessability is also a needed practical intervention</li> <li>31 Aquatic biota samples: the implementation of a standardised nomenclature. The standardisation could help information exchange in the scientific community and would help scientific dissemination.</li> </ul> |                     |
|    |                                         | 32 To further clarify and minimise the influence of confounding non-<br>target factors in mussel monitoring, e.g., by adopting international<br>harmonisation and standardization of study conditions and program<br>designs.                                                                                                                                           |                     |
| 10 | Source/evaluation of additional sources | latrines and septic tanks on the contamination of major drinking water<br>sources in developing countries                                                                                                                                                                                                                                                               | 31<br>(2.6%)<br>[8] |
|    |                                         | 2 Source - Identifying the main source of microplastic pollution in the environment                                                                                                                                                                                                                                                                                     |                     |
|    |                                         | 3 Sources - the original sources and classes of plastics and microplastics entering the marine environment need to be identified                                                                                                                                                                                                                                        |                     |
|    |                                         | 4 To understand the sources of perchlorate contamination                                                                                                                                                                                                                                                                                                                |                     |
|    |                                         | 5 Further investigations of the sources, fates, and health effects of TBBPA in China should be a huge and urgent task, mpollutant to the environment                                                                                                                                                                                                                    |                     |

| 6 Limited reviews have investigated sources, behaviour and health risks  |  |
|--------------------------------------------------------------------------|--|
| <b>0</b>                                                                 |  |
| of antimicrobial resistance genes (ARGS) in the wastewater-human         |  |
| pathway.                                                                 |  |
| 7 A comprehensive overview of specific urban stormwater pollution        |  |
| sources is still missing.                                                |  |
| 8 The extent of potential contribution from washing of buildings and     |  |
| structure surfaces                                                       |  |
| 9 The contribution of other pollutants than TSS from construction        |  |
| activities                                                               |  |
| 10 The contribution of pollutants from non-metallic building surface     |  |
| materials                                                                |  |
| 11 The significance of the pollution contribution from gardens, parks,   |  |
| other green areas, especially in anticipation of future climate changes  |  |
| characterised by increased rainfall depths and intensities in many       |  |
| • • •                                                                    |  |
| regions of the world                                                     |  |
| 12 The significance of faecal pollution caused by urban pets and         |  |
| wildlife                                                                 |  |
| 13 The continuing introduction of new materials and products, and        |  |
| potentially of new pollutants, into the urban environment suggests that  |  |
| the identification of important stormwater pollution sources, and of the |  |
| associated pollutants, is a continuing process                           |  |
| 14 The source of the triazines to the groundwater needs to be further    |  |
| investigated                                                             |  |
| 15 REEs: Further studies are needed to track the sources of REEs in      |  |
| different environmental matrices                                         |  |
| 16 Landfills have been identified as a source of persistent organic      |  |
| pollutants which can leach into the wider environment if not properly    |  |
|                                                                          |  |
| constructed and lined with geomembranes                                  |  |
| 17 African penguin population has crashed: plastic ingestion as a        |  |
| source. Plastics along coasts of SA have been shown to contain           |  |

| persistent pollutants. This potential source should be further             |
|----------------------------------------------------------------------------|
| investigated.                                                              |
| 18 PFOS in fish: thus there is a need to conduct more studies on fish in   |
| areas that are fished by recreational and subsistence consumers,           |
| screening level risk assessments with further studies on contaminant       |
| sources and mitigation measures for a cleaner environment                  |
|                                                                            |
| 19 The rivers that carry water from outside the park sustain its aquatic   |
| life that includes the Nile crocodile, but also transports pollutants into |
| the Park. Hence, improvements in source mitigation remains an              |
| important task and responsibility for all involved                         |
| 20 The investigation of metal isotope ratios would be useful to            |
| understand the origin and the sources of metal contamination (Cu or Hg     |
| isotopes).                                                                 |
| 21 Discharges from this WWTP- (Northern WW) may be considered              |
| as one of the sources of pollutants such as OCPs in the uMngeni River      |
| 22 Carbapenem-resistant bacteria: Studies demonstrating the                |
| anthropogenic impact on the riverine ecosystem in general have lacked      |
| information on the origin of the pollution                                 |
| 23 Microplastic and synthetic microfiber: The results of this study also   |
| suggest that the use of rivers for clothes washing activities, in rural    |
| communities for whom rivers are the only source of accessable water,       |
| represents a direct vector of microfiber transport to the environment      |
| 24 Brominated Flame Retardants: this study has provided evidence for       |
| significant sources of organic and metal contaminants to aquatic           |
| ecosystems in the Durban Bay catchment                                     |
| The sources of contaminants need to be identified, controlled and          |
| reduced if there is to be any improvement in water and sediment quality    |
| in Durban Bay.                                                             |
|                                                                            |
| 25 Brominated Flame Retardants: the findings of this study can be          |
| incorporated into the Estuarine Management Plan and used to identify       |
|    |           |                                                                             | r             |
|----|-----------|-----------------------------------------------------------------------------|---------------|
|    |           | and prioritise areas of the catchment where contaminant source              |               |
|    |           | identification, reduction and control procedures should be implemented      |               |
|    |           | 26 Emerging organic pollutants: The tributaries of the Umgeni River         |               |
|    |           | should also be monitored to identify possible sources of pollution load     |               |
|    |           | 27 Polycyclic aromatic hydrocarbons: Further studies can be done to         |               |
|    |           | pinpoint the sources, considering that Northern Works WWTP receives         |               |
|    |           | sewage mainly from domestic and food industries while Goudkoppies           |               |
|    |           | receives sewage mainly from the chemical industry                           |               |
|    |           | 28 CECs in recycling/reuse: practise great caution with                     |               |
|    |           | unconventional water sources for potable reuse                              |               |
|    |           | 29 Microplastics and pharmaceuticals as drivers for antimicrobial           |               |
|    |           | resistance in the environment: sinks and sources                            |               |
|    |           | 1 Monitoring/sampling- Solid waste repositories (non engineered             |               |
|    |           | landfills), onsite sanitation systems (pit latrines, septic tanks), funeral |               |
|    |           | parlors and cemeteries/gravesites constitute overlooked potential           |               |
|    |           | hotspots sources of args.                                                   |               |
|    |           | ENMs: programs in different environmental systems including                 |               |
|    |           | sediments and pore water as well as studies on their chronic toxicity to    |               |
|    |           | different taxa. Such screening models can allow the identification of hot   |               |
|    |           | spots and ultimately aid to develop appropriate and corrective strategies   |               |
|    |           | for specific situations and locales.                                        |               |
| 11 | Vaculadas | 1 Knowledge to guagantee seferty of yeard water                             | 20            |
| 11 | Knowledge | 1 Knowledge to guarantee safety of used water                               | 29            |
|    |           |                                                                             | (2.4%)<br>[9] |
|    |           | 2 Knowledge on Fate                                                         |               |
|    |           | 3 Knowledge on Behavior                                                     |               |
|    |           | 4 Knowledge on Effects                                                      |               |
|    |           | 5 Knowledge on Treatmen t technologies for their removal                    |               |

| 6 Knowledge on fate of persistent transformation products after             |  |
|-----------------------------------------------------------------------------|--|
| treatment of ECs                                                            |  |
| 7 Knowledge of new CECs                                                     |  |
| 8 There is a comparative lack of knowledge about microplastics              |  |
| research in freshwater environments                                         |  |
| 9 Little or no public and private sector awareness of the possible          |  |
| detrimental dangers posed by microplastics and nanoplastics as              |  |
| compared to macroplastics.                                                  |  |
| 10 Gaps in the current state of knowledge about this emerging class of      |  |
| environmental contaminants: PPCPs                                           |  |
| 11Limited breadth of target analytes indicating that progress within the    |  |
| field remains relatively slow                                               |  |
| 12 Limited reviews have investigated sources, behaviour and health          |  |
| risks of antimicrobial resistance genes (ARGS) in the wastewater-           |  |
| human pathway.                                                              |  |
| 13 Very little is known about the ability of anti-biotic resistance strains |  |
| in sewage sludge, and then in soil, strong pathogenic strains, such as      |  |
| EHEC pathogen O104:H4.                                                      |  |
| 14 Knowledge about typical variability of hazardous anthropogenic           |  |
| substances in mussels living in non-polluted and in polluted waters is      |  |
| important.                                                                  |  |
| 15 The analysis of EPs in aquatic biota samples involves different          |  |
| techniques, procedures and the need for extensive knowledge about the       |  |
|                                                                             |  |
| physico-chemical properties of the compounds.                               |  |
| 16 ARVDs: An in-depth knowledge of the chemical constituents                |  |
| present in environmental media is essential for the assessment of the       |  |
| associated risks to the environment and human health                        |  |
| 17 Research on REEs in developing regions, including Africa is needed,      |  |
| given prevailing conditions predisposing humans to health risks, e.g.,      |  |
| untreated drinking water                                                    |  |

| 18 PBDEs: more studies should be carried out in Africa and European<br>environment in order to counterbalance the dominance of the USA and<br>China, bearing in mind that these pollutants takes several years to phase<br>out of the eco-system                                                                                                                           |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 19 Many advances have been made towards better groundwater<br>characterization. Still, great uncertainties persist in these methods and<br>in our understanding                                                                                                                                                                                                            |  |
| 20 Uncertainty also results from a poor understanding of how our activities will impact groundwater, and this is particularly true for newer practices.                                                                                                                                                                                                                    |  |
| 21 Although there is reasonable knowledge on the general biology of<br>the Nile Crocodile and the other 3 crocodilians in Africa, there is very<br>little known about hatching success apart from nest predation                                                                                                                                                           |  |
| 22 Non-perrennial rivers: Processes taking place in N-PRs are poorly understood                                                                                                                                                                                                                                                                                            |  |
| 23 Non-perrennial rivers: Lack of knowledge, combined with the dynamic and sometimes unpredictable nature of N-PRs, makes them challenging to manage                                                                                                                                                                                                                       |  |
| 24 Pesticides: clearly, pesticides as potential endocrine disruptors needs<br>more research specifically focused on understanding the details of<br>interaction with the diversity of factors presented by the endocrine<br>system. Although herbicides as a subgrouping stand out at being<br>understudied, both fungicides and insecticides need more attention in<br>SA |  |
| 25 BMMA: these data offer the first indication of the possibility of developing alert levels for BMAA based on commonly measured physicochemical parameters                                                                                                                                                                                                                |  |
| 26 Carbapenem-resistant bacteria: Published papers on CRBP in nature are mostly focused on single bacterial isolates                                                                                                                                                                                                                                                       |  |

|    |                          | 27 Urban wastewaste epidemiology: Gaps in knowledge, research, policy:                                                                                                                                                                                                                                                                                                                          |                      |
|----|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|    |                          | Surrogate chemicals/physico-chemical properties association                                                                                                                                                                                                                                                                                                                                     |                      |
|    |                          | Early warning showing public health concerns                                                                                                                                                                                                                                                                                                                                                    |                      |
|    |                          | Near/real time                                                                                                                                                                                                                                                                                                                                                                                  |                      |
|    |                          | Sensing/monitoring (large datasets, modelling)                                                                                                                                                                                                                                                                                                                                                  |                      |
|    |                          | 28 PCBs: There is no reported literature on PCB levels in the North End<br>Lake in PE                                                                                                                                                                                                                                                                                                           |                      |
|    |                          | 29 There are currently no available reports on the NSAID content at these sites.                                                                                                                                                                                                                                                                                                                |                      |
| 12 | Ecology/trophic transfer | 1 A major gap exists in our understanding of the ecology of waterborne pathogens                                                                                                                                                                                                                                                                                                                | 26<br>(2.2%)<br>[10] |
|    |                          | 2 Fate of args and the microbial ecology of bacterial consortia in<br>biofilms and their antimicrobial degradation capacity warrants further<br>investigation.                                                                                                                                                                                                                                  |                      |
|    |                          | 3 The ecology of bat-borne infections: 1 are bats the natural reservoirs<br>or just transient carriers of these novel viruses                                                                                                                                                                                                                                                                   |                      |
|    |                          | 4 The concentration of diclofenac in sewage sludge is associated with<br>an alarming level, thus confirming that direct discharge of household,<br>hospital and pharmaceutical industrial wastewtaers into the<br>environment and/or the inefficiency of conventional WWTPs has a<br>profound impact on the occurrence of diclofenac in the water cycle that<br>extends to the entire ecosystem |                      |
|    |                          | 5 Diclofenac: Increasing exposure of the biota in the water cycle will<br>not only raise ecological risks to the ecosystem but also significantly<br>harm mammals, including human beings                                                                                                                                                                                                       |                      |
|    |                          | 6 Diclofenac might create an ecological problem for non-target species, including human beings, during chronic exposure                                                                                                                                                                                                                                                                         |                      |

|                                                                          | 1 |
|--------------------------------------------------------------------------|---|
| 7 Knowledge about impacts of microplastics exposure on aquatic           |   |
| primary producers, the trophic transfer process of microplastics and     |   |
| associated substances, and implications of consuming aquatic products    |   |
| for human health is much less known.                                     |   |
| 8 Pay more attention to the ecotoxicological effects of microplastics on |   |
| higher order predators and freshwater organisms                          |   |
| 9 Conduct more studies to clarify the role of microplastics as vectors   |   |
| for pathogenic microorganisms and potential ecological risks             |   |
| 10 To establish the ecological importance of behavioural alterations.    |   |
| 11 Behavioural endpoints provide useful sub-lethal indicators of how     |   |
| contaminants influence amphibians, and coupled with standard             |   |
| ecotoxicological endpoints, can provide valuable information for         |   |
| population models assessing the broader ecological consequences of       |   |
| environmental contamination                                              |   |
| 12 Continued political indifference, social stigma, and disregard of     |   |
| ecosystem services results in an underevaluation of groundwater as a     |   |
| renewable resource.                                                      |   |
| 13 Risk assessment for water and sediment indicated a potential risk for |   |
| the local aquatic environment from contaminants of both legacy           |   |
| (PAHs) and emerging (PFOS, UV filter octocrylene concern)                |   |
| Implications for the ecosystem and the aquaculture activities would      |   |
| require further investigation.                                           |   |
| 14 Considerations of ecological, atmospheric- and other environmental    |   |
| factors in connection to Arctic warming also need to be considered in    |   |
| the context of temporal trends and behavior of these OHCs                |   |
| 15 Ecological significance of microplastic and synthetic microfiber      |   |
| pollution has become a global concern                                    |   |
| 16: Organophosphorus flame retardants: Ongoing toxicological studies     |   |
| have shown several toxic effects of these compounds, such as the         |   |
|                                                                          |   |

| potential for ecological and human health concerns of neurotoxin and      |  |
|---------------------------------------------------------------------------|--|
| carcinogenic nature                                                       |  |
| 17 Bt maize: No studies that can inform risk assessments regarding the    |  |
| effect of Bt maize on aquatic ecosystems have been done in S Africa.      |  |
| 18 Bt maize: It is important that future studies address the possible     |  |
| effects of Cry proteins on non-target species that are closely related to |  |
| the target pests of Cry proteins                                          |  |
| 19 Bt maize: The characterization of exposure of aquatic organisms        |  |
| along with the known specificity of the insecticidal trait, linked to the |  |
| ecology of non-target species present in that habitat, will contribute to |  |
| improved risk assessment studies on aquatic environments                  |  |
| 20 Agricultural pesticides: Current study found much higher               |  |
| concentrations of atrazine and other EDCs in drinking water in this       |  |
| study, which presents a much higher potential of exposure and the         |  |
| possibility of a myriad of effects on humans and the environment          |  |
| (fauna, flora)                                                            |  |
| 21 River water quality: research is also needed to determine the impact   |  |
| of the identified pollutants on the aquatic ecosystems in the Swannies,   |  |
| Klipdrift and Palmiet rivers                                              |  |
| 22 Microplastic pollution: Given the low dilution potential of local      |  |
| freshwater resources, coupled with ongoing waste management               |  |
| problems, the impacts of microplastics on local freshwaters resources     |  |
| and the biological processes dependent on it remains unclear              |  |
| 23 Trophic transfer mechanisms                                            |  |
| 24 Knowledge about impacts of microplastics exposure on aquatic           |  |
| primary producers, the trophic transfer process of microplastics and      |  |
| associated substances, and implications of consuming aquatic products     |  |
| for human health is much less known.                                      |  |

|    |            | comprehensively evaluate- the synthetic effects of microplastics and<br>environmental toxicants and identify the role of microplastics in trophic<br>transfer of environmental contaminants25 PAH, PCB, OC pesticide: The study should also investigate the<br>importance of small, forage fish as a vector for the transfer of<br>contaminants through estuarine food webs, including to higher trophic<br>level organisms such as birds.26 Toxic elements: future study will focus on assessing the transfer of<br>toxic elements to humans through the food chain (sediment/water-<br>plant-animal-human chain) |                      |
|----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 13 | Management | 1 Sustainable CECs management.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21<br>(1.7%)<br>[11] |
|    |            | 2 Control strategies for commonly occurring CECs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
|    |            | 3 Urban planning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
|    |            | 4 Control of informal settlements, which generally lack sewerage systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
|    |            | 5 A lot of measures are not yet in place for the mitigation of cyanobacterial blooms, particularly in the implementation of plans for most countries                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |
|    |            | 6 ARVDs: the similarity in removal rates between conventional and<br>DEWATS WWTPs allows new insights for planning local wastewater<br>treatment, and potential reuse applications, in periurban areas that are<br>not served by conventional sewer lines                                                                                                                                                                                                                                                                                                                                                          |                      |
|    |            | 7 The effective dosage at 0.75 mg/l to 1.0 mg/l obtained in this study is<br>hereby proposed as an alternative disinfectant dose that could facilitate<br>the control of microbial pathogens in wastewater treatment plants                                                                                                                                                                                                                                                                                                                                                                                        |                      |
|    |            | 8 With conditions often changing faster than scientist or policy makers<br>can anticipate, adaptive management strategies and interdisciplinary                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |

| F I |                                                                         | 1 |
|-----|-------------------------------------------------------------------------|---|
|     | research provide a means to address sustainable resource governance     |   |
|     | under uncertain conditions.                                             |   |
|     | 9 These results suggest the need for implementation of management       |   |
|     | policies at basin scale including efficient WWTP and special regulation |   |
|     | on agricultural activities within and nearby internationally recognized |   |
|     | sites for conservation                                                  |   |
|     | 10 Due to environmentally unsound management of e-waste and other       |   |
|     | consumer products containing PBDEs at municipal dumpsites in            |   |
|     | Nigeria, food from animal origin (chicken eggs, cow milk) was found     |   |
|     | to be contaminated with PBDEs                                           |   |
|     | 11 NOM: central analytical facilities accessible to a number of Water   |   |
|     | Treatment plants can be established for NOM control                     |   |
|     | 12 Water Quality in Non-Perennial rivers is naturally highly variable   |   |
|     | Basic principles proposed for management of NP rivers/these systems:    |   |
|     | 1 rivers need to be assessed on a case-by-case basis until such time as |   |
|     | we can apply general principles to an understanding of WQ in N-PRs      |   |
|     | 2 abstraction of both surface and groundwater, and storage of water in  |   |
|     | upstream dams, needs to be strictly limited and understanding of the    |   |
|     | groundwater regime is crucial if we are to avoid unsustainable          |   |
|     | "mining"" of the resource                                               |   |
|     | 3 effluents need to be controlled and conservative effluent standards   |   |
|     | need to be set, sometimes on a case-by-case basis, for both ground and  |   |
|     | surface water                                                           |   |
|     | 4 flows may need to be augmented at certain times of the year           |   |
|     | 5 buffer zones need to be set, and where possible, these should be      |   |
|     | designed to encourage the growth of natural vegetation                  |   |
|     | 6 the most useful step towards improving management of these systems    |   |
|     | would be the development of a much-simplified version of DRIFT-Arid     |   |
|     | for assessing water requirements for N-PRs, using additional test cases |   |
|     |                                                                         |   |

| across the spectrum from episodic to semi-permanent systems and in       |  |
|--------------------------------------------------------------------------|--|
| different biomes                                                         |  |
| 7 this should be linked to the development of a suitable monitoring      |  |
| programme for a number of N-PRs, particularly those for which water      |  |
| allocations have already been set.                                       |  |
| 8 in seeking to deepen our knowledge of the ecological functioning of    |  |
| N-PRs it needs to be understood that because of the inherent variability |  |
| of these systems, shortterm investigations are of limited use and that   |  |
| study projects need to be long-term (10 years or more)                   |  |
| Therefore, serious measures must be taken by the local government to     |  |
| reduce the contamination effects of the river water and protect the      |  |
| environment.                                                             |  |
| 13 Agricultural chemicals: despite this technical knowledge gap, the     |  |
| need for improved management of pesticides in the environment has        |  |
| been echoed by the DAFF, formerly DoA                                    |  |
| 14 PAH, PCB, OC pesticides: the findings of this study can be            |  |
| incorporated into the Estuarine Management Plan and used to identify     |  |
| and prioritise areas of the catchment where contaminant source           |  |
| identification, reduction and control procedures should be implemented   |  |
| 15 Fluoride in water: This study reveals that fluoride content in        |  |
| Namibias drinking water is a significant problem that needs addressing   |  |
| 16 CECs in recycling/reuse : prevent release of untreated or partially   |  |
| treated sewage to ocean or surface water                                 |  |
| 17 Polycyclic aromatic hydrocarbons in aquatic ecosystems:               |  |
| incorporating results from this study into management of this water      |  |
| catchment one msut keep in mind that PAHs are mainly airborne.           |  |
| 18 It was an observation during this project that many authorisations    |  |
| and licenses granted failed to include the constituents relevant to the  |  |
| process involved.                                                        |  |
| process involved.                                                        |  |

|    |          | The inclusion of all the relevant constituents that are linked to the   |        |
|----|----------|-------------------------------------------------------------------------|--------|
|    |          | agricultural activity in question must be included in any licence or    |        |
|    |          | authorisation granted.                                                  |        |
|    |          | Establishing these lists for organic and inorganic constituents remains |        |
|    |          | a fundamental research priority that will allow for appropriate         |        |
|    |          | monitoring, assessment and thus management thereof                      |        |
|    |          | 19 Agricultural chemicals: Given the chllenges related to monitoring    |        |
|    |          | (due to the transient nature of contamination) and that pesticide       |        |
|    |          | contamination in water resources occurs primarily as a result of        |        |
|    |          | nonpoint sources (runoff, leaching) further research should focus on    |        |
|    |          | modelling techniques aimed at assessing the fate, transport and         |        |
|    |          | mitigation/management options of pesticides in water at multiple scales |        |
|    |          | (field to catchment)                                                    |        |
|    |          | 20 Microplastic pollution: at the heart of the matter are unsustainable |        |
|    |          | production and consumption patterns, inadequate waste management        |        |
|    |          | and inappropriate disposal of plastics                                  |        |
|    |          | 21 Microplastic pollution: Also need to promote best practices in in    |        |
|    |          | water, waste and wastewater management, amongst other things.           |        |
|    |          | Plastics can be designed to be inherently recyclable                    |        |
|    |          | , and there is lots of potential to turn waste items into new products. |        |
| 14 | Sampling | 1 Sampling - mode and strategy                                          | 19     |
|    | ~        |                                                                         | (1.6%) |
|    |          |                                                                         | [12]   |
|    |          | 2 Sampling- frequency                                                   |        |
|    |          | 3 Integrated sampling and residence time- dependent studies             |        |
|    |          | 4 Sampling- One-time grab samples from sampling locations are not       |        |
|    |          | particularly representative of any definable general class of sites.    |        |
|    |          | 5 Sampling: more detailed and focus time series sample collection       |        |
|    |          | 1 0 1                                                                   |        |
|    |          | designs that better capture temporal variation.                         |        |

|                                                                              | 1 |
|------------------------------------------------------------------------------|---|
| 6 Monitoring/sampling- Solid waste repositories (non-engineered              |   |
| landfills), on-site sanitation systems (pit latrines, septic tanks), funeral |   |
| parlours and cemeteries/gravesites constitute overlooked potential           |   |
| hotspots sources of args.                                                    |   |
| 7 Useful EP degradation and stability studies thoughout the sample           |   |
| collection and extraction stage were not carried out to determine            |   |
| stability of each compound during sample handling                            |   |
| 8 POPs: temporal data have been assessed, but majority of datasets do        |   |
| not show trends due to limited sampling periods, and limited sample          |   |
| size. More consistent monitoring produces nationwide data, leading to        |   |
| informed risk management studies                                             |   |
| 9 Further studies should be conducted with a more detailed sampling          |   |
| plan throughout the Maipo River, into which the effluents of main            |   |
| wastewater treatment plants are discharged                                   |   |
| 10 Declining bird species exposed to PBDEs: Analysis of additional           |   |
| samples is therefore recommended to fully evaluate this potential            |   |
| impact                                                                       |   |
| 11 Metals in crocodile eggs: it would be opportune to collect, analyse       |   |
| and interpret organic and inorganic residue data for more crocodile eggs     |   |
| from more rivers now that concerns have been established                     |   |
| 12 Pesticides: Pesticide contamination in water resources is typically       |   |
| transient, with peak/high concentrations most often being associated         |   |
| with specific events – during actual spraying or during heavy rainfall.      |   |
| Sampling frequency adopted in all catchments in this study is unlikely       |   |
|                                                                              |   |
| to represent peak concentrations                                             |   |
| 13 Aquatic microbial diversity: the physico-chemical analysis of water       |   |
| samples is not a very sensitive measure of changes in the type               |   |
| (inorganic vs organic) nutrient concentration or anthropogenic               |   |
| pollution within the system.                                                 |   |

| We observed changes in the abundance of dominant microbial species       |  |
|--------------------------------------------------------------------------|--|
| in sediment samples that were not observed in the water column along     |  |
| the length of estuaries with apparently small salinity and nutrient      |  |
| gradients.                                                               |  |
| 6                                                                        |  |
| These findings lend strong support for the need to focus on sediment     |  |
| sampling when monitoring estuarine health and aquatic ecosystems in      |  |
| general.                                                                 |  |
| 14 Aquatic toxicity testing: sampling recommendations need to be         |  |
| assessed to more completely consider how to address conflicting          |  |
| impacts, in particular, where diffuse release of effluent is present     |  |
| This process should be undertaken with DWS input                         |  |
| 15 Aquatic toxicity testing: sampling frequency recommendations need     |  |
| to be clarified, in particular for agriculture.                          |  |
| Stipulations on modifying sampling regimes based on assessment of        |  |
| collected site-specific data need to be specifically addressed           |  |
| 16 Cyanobacteria: It was recommended that depth profiling of the         |  |
| occurrence of cyanobacteria be done in order to identify an abstraction  |  |
| depth in the multi-level intake of the reservoir that has relatively low |  |
| levels of cyanobacteria cells                                            |  |
| 17 Natural organic matter: Extensive sampling that will account for all  |  |
| the geographic locations in South Africa is required                     |  |
| 18 CECs in waste water treated for direct potable reuse: evaluation of   |  |
| indicative removal potential                                             |  |
| Since the project team was not able to collect 24 hr composite samples,  |  |
| it is difficult to evaluate the indicative removal potential of the      |  |
| treatment units since plug flow characteristics can be observed when     |  |
| taking grab samples,                                                     |  |
| It is therefore recommended that sufficient resources be allocated in    |  |
| future studies that will allow for 24 hr composite sampling to be        |  |
| performed                                                                |  |
| performed                                                                |  |

|    |                 | 19 Urban wastewater epidemiology: compare sampling, detection,                                                                                                                                                                                                                                                 |                     |
|----|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|    |                 | monitoring methods:                                                                                                                                                                                                                                                                                            |                     |
|    |                 | Mass loading                                                                                                                                                                                                                                                                                                   |                     |
|    |                 | Composite sampling vs grab sampling                                                                                                                                                                                                                                                                            |                     |
| 15 | Use/consumption | 1 Production/sales/use                                                                                                                                                                                                                                                                                         | 17<br>(1.4)<br>[13] |
|    |                 | 2 DCF consumption                                                                                                                                                                                                                                                                                              |                     |
|    |                 | 3 Reduction in use                                                                                                                                                                                                                                                                                             |                     |
|    |                 | 4 We remain unclear on the scale of pharmaceuticals and their potential combined effects on biota                                                                                                                                                                                                              |                     |
|    |                 | 5 Lack of market penetration data for products containing TCS and TCC – for SA and global- makes it difficult to compare and refine the model results in this study                                                                                                                                            |                     |
|    |                 | 6 ARVDs: a nationwide study of the presence, use pattern, material<br>flow analysis and removal rate of ARVDs is necessary in order to<br>estimate the load of ARVDs released into the surrounding surface and<br>fresh water bodies, since ARVDs may have associated ecological risks<br>to aquatic organisms |                     |
|    |                 | 7 Hence, majority of countries from these regions are yet to reduce, re-<br>use or re-cycle? Plastic materials to enhance its abatement                                                                                                                                                                        |                     |
|    |                 | 8 Information along the lines of product consumption by geographical region or by sector is not readily available to environmental researchers, stakeholders or law makers                                                                                                                                     |                     |
|    |                 | 9 Restricting the consumption of certain products, such as antibiotics to crucial cases and replacement of some others with less harmful compounds, are possible strategies in short-term                                                                                                                      |                     |
|    |                 | 10 PFOS in fish: In the meantime, consumption advisories should be considered as a prudent public health measure.                                                                                                                                                                                              |                     |

| 11 Agricultural chemicals: Additional useful resources with regards to         characterizing pesticide use include databases produced by cropLife         South Africa and Agrilntel, which provide information on active         ingredients and recommended rates of application of registered         pesticides for different crops in the country         12 The policy also specifically mentions the need to protect water         quality through releasing fewer pesticides and/or less toxic pesticides         into the environment, and to use practices that minimize the movement         of pesticides to surface water and groundwater.         13 PAH, PCB, OC pesticide: a key unknown in the context of         determining the potential human health risk posed by contaminants in         fish and shellfish tissue are fish and shellfish consumption rates for SA         recreational and subsistence fishers. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| South Africa and Agrilntel, which provide information on active<br>ingredients and recommended rates of application of registered<br>pesticides for different crops in the country12 The policy also specifically mentions the need to protect water<br>quality through releasing fewer pesticides and/or less toxic pesticides<br>into the environment, and to use practices that minimize the movement<br>of pesticides to surface water and groundwater.13 PAH, PCB, OC pesticide:<br>determining the potential human health risk posed by contaminants in<br>fish and shellfish tissue are fish and shellfish consumption rates for SA                                                                                                                                                                                                                                                                                               |
| ingredients and recommended rates of application of registered         pesticides for different crops in the country         12 The policy also specifically mentions the need to protect water         quality through releasing fewer pesticides and/or less toxic pesticides         into the environment, and to use practices that minimize the movement         of pesticides to surface water and groundwater.         13 PAH, PCB, OC pesticide:       a key unknown in the context of         determining the potential human health risk posed by contaminants in         fish and shellfish tissue are fish and shellfish consumption rates for SA                                                                                                                                                                                                                                                                            |
| pesticides for different crops in the country         12 The policy also specifically mentions the need to protect water         quality through releasing fewer pesticides and/or less toxic pesticides         into the environment, and to use practices that minimize the movement         of pesticides to surface water and groundwater.         13 PAH, PCB, OC pesticide: a key unknown in the context of         determining the potential human health risk posed by contaminants in         fish and shellfish tissue are fish and shellfish consumption rates for SA                                                                                                                                                                                                                                                                                                                                                         |
| 12 The policy also specifically mentions the need to protect water quality through releasing fewer pesticides and/or less toxic pesticides into the environment, and to use practices that minimize the movement of pesticides to surface water and groundwater.         13 PAH, PCB, OC pesticide: a key unknown in the context of determining the potential human health risk posed by contaminants in fish and shellfish tissue are fish and shellfish consumption rates for SA                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| quality through releasing fewer pesticides and/or less toxic pesticides into the environment, and to use practices that minimize the movement of pesticides to surface water and groundwater.         13 PAH, PCB, OC pesticide: a key unknown in the context of determining the potential human health risk posed by contaminants in fish and shellfish tissue are fish and shellfish consumption rates for SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| quality through releasing fewer pesticides and/or less toxic pesticides into the environment, and to use practices that minimize the movement of pesticides to surface water and groundwater.         13 PAH, PCB, OC pesticide: a key unknown in the context of determining the potential human health risk posed by contaminants in fish and shellfish tissue are fish and shellfish consumption rates for SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| into the environment, and to use practices that minimize the movement         of pesticides to surface water and groundwater.         13 PAH, PCB, OC pesticide: a key unknown in the context of         determining the potential human health risk posed by contaminants in         fish and shellfish tissue are fish and shellfish consumption rates for SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| of pesticides to surface water and groundwater.         13 PAH, PCB, OC pesticide: a key unknown in the context of determining the potential human health risk posed by contaminants in fish and shellfish tissue are fish and shellfish consumption rates for SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 13 PAH, PCB, OC pesticide: a key unknown in the context of<br>determining the potential human health risk posed by contaminants in<br>fish and shellfish tissue are fish and shellfish consumption rates for SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| determining the potential human health risk posed by contaminants in<br>fish and shellfish tissue are fish and shellfish consumption rates for SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| fish and shellfish tissue are fish and shellfish consumption rates for SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| recreational and subsistence listers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14 Pharmaceutical and personal care products: raising public awareness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| of the consequences of liberal and irresponsible PPCP use and disposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Image: Second consequences of interfail and incorporation of the consequences of interfail and incorporation of the anount           15 Various best practice measures that can assist in reducing the amount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| of wastewater generated and/or decrease the potential environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| toxicity of the effluent:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 leakages- regularly fix leakages in storage units and pipes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2 spillages – institute measures to reduce spillages and/or collect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| product from spillages for reprocessing; eg, install spill collection trays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| at appropriate sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3 solids: install grids over drains to prevent solids from entering wash-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4 degumming: qif possible, reduce amount of phosphoric acid used in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| degumming by improving the neutralization process or by using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| alternatives such as enzymes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5 maintenance: institute a preventative maintenance protocol: regular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| servicing of expellers and other mechanical equipment, etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 6 educate staff: make staff aware why its important to reduce the           |  |
|-----------------------------------------------------------------------------|--|
| amount of wastewater generated and improve the quality of the               |  |
| wastewater                                                                  |  |
| 7 Train staff how to implement appropriate measures, and provide            |  |
| refresher instructions at timely intervals                                  |  |
| 8 chemical audits: consider substituting different chemicals and/or         |  |
| materials, eg caustic soda in solution may be cheaper than the solid form   |  |
| and results in less loss of consumables, reduced corrosion and improved     |  |
| soap-stock quality                                                          |  |
| 9 caustic soda usage – monitor addition carefully to prevent                |  |
| saponification of neutral oil                                               |  |
| 10 soap splitting- use continuous soap splitting rather than batch to       |  |
| reduce the volume of acid water                                             |  |
| 11 detergents: minimize the use of detergents in cleaning operations to     |  |
| prevent emulsification of oil in wastewater                                 |  |
| 12 fat traps: use fat traps judiciously- to prevent oil from entering wash- |  |
| down water                                                                  |  |
| 13 Measure and monitor: the volume of effluent produced from each           |  |
| area. Monitor the quality of effluent produced from different processes     |  |
| to identify areas where product and/or consumables are being lost           |  |
| 14 Product recovery: recovery at from effluent to increase soap-stock       |  |
| production and improve wastewater quality                                   |  |
| 16 Agricultural chemicals: It is further recommended that regular           |  |
| updates of pesticide use data, spatial crop distribution and associated     |  |
| pesticide use maps are produced to ensure the availability of up to date    |  |
| information for use in design of monitoring programmes and risk             |  |
| assessment studies                                                          |  |
| 17 Microplastic polution: at the heart of the matter are unsustainable      |  |
| production and consumption patterns, inadequate waste management            |  |
| and inappropriate disposal of plastics                                      |  |
| and mappropriate disposar of plastics                                       |  |

| 16 | Models | 1 Models for impacts of multiple contaminants and larger spatial scales                                                                                                                                                                                                                                         | 17<br>(1.4%)<br>[13] |
|----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|    |        | 2 Models of pollutants in different phases, beside water                                                                                                                                                                                                                                                        |                      |
|    |        | 3 Development of accurate models to facilitate decisions on tolerable<br>pollution loads, equitable sharing of pollution reduction and locally<br>appropriate interventions                                                                                                                                     |                      |
|    |        | 4 Development of modelling frameworks for CECs including mixtures<br>and interaction between CECs                                                                                                                                                                                                               |                      |
|    |        | 5 Model-supported analysis can be used in further investigation in order<br>to define the flux of POPs and plastic additives in this species (whale<br>sharks)                                                                                                                                                  |                      |
|    |        | 6 Future research with SSRIs is necessary to reduce uncertainties by<br>improving predictive utility of models and approaches for cross-species<br>extrapolations, particularly given diverse behavioral consequences<br>increasingly reported for SSRIs and other neuroactive substances in<br>aquatic systems |                      |
|    |        | 7 Agricultural chemicals: in general, the application of models in risk assessment of pesticides in South Africa is under-utilised.                                                                                                                                                                             |                      |
|    |        | 8 Agricultural chemicals: a critical component of any modelling<br>procedure is the identification of relevant exposure assessment<br>scenarios that characterize environmental conditions that are used for<br>model input parameters.                                                                         |                      |
|    |        | . These conditions vary widely across the country- and thus, for the<br>purposes of modelling, exposure assessment scenarios can be<br>developed which are broadly representative of agriculture practiced in<br>major production areas of the country                                                          |                      |
|    |        | 9 Agricultural chemicals: For adoption in SA it is essential that these<br>models are interrogated so as to clearly identify their data requirements                                                                                                                                                            |                      |

| and their suitability for performing exposure assessments in South            |  |
|-------------------------------------------------------------------------------|--|
| Africa.                                                                       |  |
| These requirements need to be assessed against data that is currently         |  |
| available in S Africa to determine the viability of using these models        |  |
| for risk assessment of pesticides in S Africa                                 |  |
| 10 Agricultural chemicals: improved prioritization of environmental           |  |
| risk (to inform environmentally friendly use of pesticides), monitoring       |  |
| and modelling approaches are therefore essential to close the gap on          |  |
| assessing the risks of pesticides in the environment                          |  |
| 11 Engineered nanoparticles: The quality of the neural network models         |  |
| is directly related to the quality of the data used in their construction. In |  |
| order to improve the data, more consistent testing and reporting of           |  |
| descriptors should be promoted.                                               |  |
| Moreover, there is a need to measure endpoints related to behavior and        |  |
| effects concurrently to reduce data ambiguity                                 |  |
| 12 River water quality: The model used in this research tends to be           |  |
| useful in small river systems. However, this model will need to be            |  |
| expanded to predict how pollutants are transported over larger distances      |  |
| 13 River water quality: This practical model was applied to a small-          |  |
| scale river system (main focus was Grabouw, and not the entire                |  |
| catchment). More research is required on large-scale rivers to determine      |  |
| how variability affects the outputs of these models                           |  |
| 14 Agricultural chemicals: data on physicochemical properties of              |  |
| pesticides in South African environmental conditions are not available.       |  |
| International databases were therefore consulted in order to obtain the       |  |
| relevant data for- calculation of mobility (GUS) index, Studies have          |  |
|                                                                               |  |
| shown that physicochemical properties of pesticides can vary                  |  |
| geographically, depending on local climatic and soil conditions.              |  |

| Considering this limitation, however, the occurrence of pesticides            |  |
|-------------------------------------------------------------------------------|--|
| detected in water resources in this (and other) studies was well              |  |
| predicted by physicochemical data available in international databases.       |  |
| The fact that these originate from international databases should             |  |
| therefore not be seen as a reason for not relying on this data for future     |  |
| modelling approaches undertaken in S Africa                                   |  |
| 15 Agricultural chemicals: Given the chllenges related to monitoring          |  |
| (due to the transient nature of contamination) and that pesticide             |  |
| contamination in water resources occurs primarily as a result of              |  |
| nonpoint sources (runoff, leaching) further research should focus on          |  |
| modelling techniques aimed at assessing the fate, transport and               |  |
| mitigation/management options of pesticides in water at multiple scales       |  |
| (field to catchment)                                                          |  |
| 16 Agricultural chemicals: research should focus on the integration of        |  |
| these models into the risk assessment process conducted during the            |  |
| registration of pesticides. While the registration process considers the      |  |
| toxicity of a pesticide, there are no exposure assessment procedures          |  |
| performed to assess the environmental fate and predicted environmental        |  |
| concentrations under S African conditions                                     |  |
| 17 CECs in wastewater treated for direct potable reuse: process               |  |
| performance and plant reliability analysis                                    |  |
| Overall, the current historical process data is not suited as is for deriving |  |
| process monitoring models                                                     |  |
|                                                                               |  |
| However, there is scope, given rigorous data collection programmes,           |  |
| for univariate monitoring of key quality variables 9slow sample rates),       |  |
| or multivariate monitoring of operational variables (fast sample rates        |  |
| A future direction for statistical analysis is to consider how process unit   |  |
| reliabilities affect other process unit reliabilities, and in turn, the       |  |
| reliability of the entire plant under consideration.                          |  |

|    |       | For this, multivariate and conditional distribution fitting would be<br>required, which would require rigorous data collection at a high data<br>quality                                                                                                                                         |                      |
|----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 17 | Scope | 1 Preservatives, anti-oxidants and flavorants present in cosmetics and<br>cleansing products has been less studied                                                                                                                                                                               | 15<br>(1.2%)<br>[14] |
|    |       | 2 Further studies of additional classes of pharmaceuticals and other<br>CECs in on-site wastewater effluents                                                                                                                                                                                     |                      |
|    |       | 3 The focus of research should be accordingly transferred from PBDE to other currently used BFRs in later study.                                                                                                                                                                                 |                      |
|    |       | development of methodology tailored for diverse emerging pollutants<br>in water and sediments could assist to analyse a wider range of<br>emerging pollutants such as acidic polar organic compounds                                                                                             |                      |
|    |       | POPs: a potential decline in legacy POPs in Ghana can be forseen with<br>low-toxicity pesticide alternatives and regulations implemented by<br>Ghana, However, more consideration could be placed on emerging                                                                                    |                      |
|    |       | contaminants (such as PFASs, HFRs) and unintentionally produced<br>POPs (PCCD/Fs, PBDD/Fs, PCNs and dlPCBs), as trends of these<br>contaminants in the environment are less well understood                                                                                                      |                      |
|    |       | 4 To broaden the suite of contaminants tested                                                                                                                                                                                                                                                    |                      |
|    |       | 5 To better study and thus understand the effects of multiple stressors                                                                                                                                                                                                                          |                      |
|    |       | 6 Emerging hospital pathogens: A baumannii and K pneumonia were<br>confirmed among CRB42 only in river water sampled after discharge<br>of wastewater from a general hospital                                                                                                                    |                      |
|    |       | 7 Aquatic microbial diversity: the advent of new NGS technologies<br>that substantially decrease the cost of generating sequence datasets<br>provide and opportunity to apply the approach taken in this study<br>widely to include other important estuarine systems around the SA<br>cpastline |                      |

|  |                                                                          | 1 |
|--|--------------------------------------------------------------------------|---|
|  | 8 EDCs removal from wastewater: This study partially quantified the      |   |
|  | risks resulting from discharging EDCs into receiving water bodies        |   |
|  | As only a few EDCs were evaluated, there is a need to study additional   |   |
|  | groups of these compounds.                                               |   |
|  | 9 Emerging and persistent contaminants/pathogens: there is a need to     |   |
|  | expand the scope of the study to include several rivers that feed into   |   |
|  | drinking water treatment plants                                          |   |
|  | 10 Emerging and persistent contaminants/pathogens: the level and         |   |
|  | impact of emerging contaminants can be well understood by including      |   |
|  | sediments in the study                                                   |   |
|  | 11 Emerging and persistent contaminants/pathogens: available and         |   |
|  | emerging antibiotic-resistant genes in microbial communities present in  |   |
|  | wastewater treatment plants should be investigated                       |   |
|  | 13 Polycyclic aromatic hydrocarbons in aquatic ecosystems: The           |   |
|  | biomarker response results could not conclusively be attributed to       |   |
|  | PAHs, and therefore a broad spectrum screening for a much larger         |   |
|  | variety of organic chemical pollutants is advised for this densely       |   |
|  | populated area of Gauteng.                                               |   |
|  | Chemical compounds that can be considered include: polychlorinated       |   |
|  | biphenyls, brominated flame retardants, organochlorine pesticides,       |   |
|  | plasticisers, pharmaceuticals and personal care products and             |   |
|  | perfluorinated compounds, just to name a few compound classes            |   |
|  | 14 Agricultural chemicals: While the analytical approach adopted in      |   |
|  | this study catered for a large number of different pesticides, it is     |   |
|  | important to note that glyphosate (most heavily applied pesticide in the |   |
|  | country) was not included in screening or quantitative analysis.         |   |
|  | Considering its high quantity of use as well as increasing evidence of   |   |
|  | human health-related effects, future research should focus on            |   |
|  | developing analytical methods for detection of this pesticide (and its   |   |
|  | breakdown products) in water resources in S Africa                       |   |
|  |                                                                          |   |

|    |          | 15 Urban wastewater epidemiology: Gaps in knowledge, research, policy:                                   |                      |
|----|----------|----------------------------------------------------------------------------------------------------------|----------------------|
|    |          | Surrogate chemicals/physico-chemical properties association                                              |                      |
|    |          | Early warning showing public health concerns                                                             |                      |
|    |          | Collaboration between scientific disciplines and governing bodies                                        |                      |
|    |          | Near/real time                                                                                           |                      |
|    |          | Sensing/monitoring (large datasets, modelling)                                                           |                      |
| 18 | Mixtures | 1 Complexity of Mixtures of CECs in aquatic environment                                                  | 15<br>(1.2%)<br>[14] |
|    |          | 2 Monitoring of new CECs                                                                                 |                      |
|    |          | 3 Mixture effects- almost complete lack of directly measured mixture                                     |                      |
|    |          | toxicity data for pairs (let alone higher order mixtures)) of the analytes                               |                      |
|    |          | 4 Future studies deepen research on determination of single and mixture                                  |                      |
|    |          | toxicity of the azole antifungals                                                                        |                      |
|    |          | 5 There is necessity to link likely implications of both TCS and TCC or                                  |                      |
|    |          | their mixtures to human health through the food chain-                                                   |                      |
|    |          | 6 Future work to consider interactions between TCS and TCC as a                                          |                      |
|    |          | mixture, and the impact on the aquatic organisms where effects may be                                    |                      |
|    |          | antagonistic, additive, or synergistic such that individual chemicals                                    |                      |
|    |          | effects can either be reduced or enhanced                                                                |                      |
|    |          | 7 Understanding the mixture effect of REEs and other stressors such as                                   |                      |
|    |          | organic pollutants on acute and chronic ecotoxicology                                                    |                      |
|    |          | 8 As we learn more about the long-term ecotoxicological impacts of                                       |                      |
|    |          | ECs and their TPs in the environment, it is critical to synthesize key                                   |                      |
|    |          | information on validated analytical methods, sensitive test methods for                                  |                      |
|    |          | ecological effects, occurrence data, treatment data, and environmental                                   |                      |
|    |          | fate data that will facilitate the development of potential regulations to reduce ECs in the environment |                      |

| 9 The risk assessment was based on EQS and PNEC values, available          |  |
|----------------------------------------------------------------------------|--|
| in literature for less than a third of the investigated compounds.         |  |
| These ecotoxicology thresholds can be determined by in-silico              |  |
| approaches using large uncertainty factors, and undergo regular            |  |
| revisions accounting for new scientific evidences, which can drastically   |  |
| change the HQ determined here.                                             |  |
| Future research should focus on the refinement of these thresholds,        |  |
| especially in the context of complex mixtures.                             |  |
| 10 African penguin population has crashed: effects of combinations         |  |
| cannot be excluded, as well as more subtle effects on reproduction,        |  |
| development, and behaviour.                                                |  |
| 11 Pesticides: more research is needed regarding the behavior of           |  |
| pesticides in mixture, to understand the interaction of these chemicals    |  |
| when attempting to predict endocrine disruption when dealing with          |  |
| mixtures                                                                   |  |
| 12 Pesticides: Although population effects needs more attention,           |  |
| understanding the complex interactions when exposed to complex             |  |
| mixtures in the field at individual levels must continue                   |  |
| 13 Agricultural chemicals: it is important to note that mixtures of        |  |
| agricultural chemicals may result in additive, synergistic or antagonistic |  |
| responses, implying that the expected ED bioassay response may be          |  |
| higher or lower than anticipated from known responses of individual        |  |
| chemicals.                                                                 |  |
| in this respect a comparative study of the relative importance of          |  |
| different sources of EDCs in the environment is recommended to             |  |
| prioritise and focus future research initiatives in this field.            |  |
| 14 Urban Waastewater epidemiology: Gaps in knowledge, research,            |  |
| policy:                                                                    |  |
|                                                                            |  |
| Surrogate chemicals/physico-chemical properties association                |  |

|    |              | 15 Microplastic pollution: The potential health impacts of individual compounds or mixtures are also mostly unknown                                                                                                                         |                      |
|----|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 19 | Epidemiology | 1 Human epidemiology for links between CECs and public health risk                                                                                                                                                                          | 12<br>(1.0%)<br>[15] |
|    |              | 2 Further epidemiological studies by employing more samples and<br>analysing more known and unknown POP compounds are urgently<br>needed to clarify the relationships more robustly                                                         |                      |
|    |              | <ul> <li>3 Epidemiology studies to link STMs and risk</li> <li>4 Epidemiology- Although the epidemiological evidence base remains weak, ARGs originating from wastewater could contribute to antimicrobial resistance in humans.</li> </ul> |                      |
|    |              | 5 REEs: Epidemiological data linking human health to REEs exposure remains weak.                                                                                                                                                            |                      |
|    |              | 6 Epidemiological data based on controlled experiments linking dietary<br>intake to human health conditions, for example in areas known for<br>REEs pollution                                                                               |                      |
|    |              | 7 SUGEs: Conducting case-control epidemiological research linking TGCs to human health effects.                                                                                                                                             |                      |
|    |              | 8 Research to understand 1,4-dioxane exposure and effects in human populations.                                                                                                                                                             |                      |
|    |              | 9 Sufficiently powered epidemiology studies investigating the general population have yet to be conducted                                                                                                                                   |                      |
|    |              | 10 Such studies are urgently needed to better understand human exposure and the public health implications of 1,4-dioxane exposure                                                                                                          |                      |
|    |              | 11 Agricultural pesticides: further studies are recommended, including<br>epidemiological investigations to establish the prevalence of<br>environmental health risks and specifically to establish a cause-effect-                         |                      |

|    |                 | relationship between human exposure to the studied pesticides and         |        |
|----|-----------------|---------------------------------------------------------------------------|--------|
|    |                 | potential environmental health risks highlighted in other studies.        |        |
|    |                 | 12 Pesticides: pesticide-linked epidemiology should be investigated by    |        |
|    |                 | including or linking to endocrine disruption research                     |        |
|    |                 |                                                                           |        |
| 20 | Bioaccumulation | 1 Bioaccumalation and biomagnification potential, uaing biotic            | 11     |
|    |                 | samples                                                                   | (0.9%) |
|    |                 |                                                                           | [16]   |
|    |                 | 2 Bioavailable LC50 values for the target pyrethroids                     |        |
|    |                 | 3 Application of bioavailability-based measurements are more limited      |        |
|    |                 | for pyrethroids in field-collected sediments                              |        |
|    |                 | 4 Bioaccumulation of DCF in the food web                                  |        |
|    |                 | 5 Bioaccumalation                                                         |        |
|    |                 | 6 Bioaccumulation and associated hazards of pharmaceuticals and other     |        |
|    |                 | ionisable chemicals in aquatic life, including edinble fish and shellfish |        |
|    |                 | 7 Bioaccumalation- Future research Is warranted to understand             |        |
|    |                 | bioaccumulation and associated hazards of pharmaceuticals and other       |        |
|    |                 | ionisable chemicals in aquatic life, including edinble fish and shellfish |        |
|    |                 | 8 Bioaccumalation: another important area that has to be properly         |        |
|    |                 | addressed is the bioaccumulation of PPCPs in aquatic organisms such       |        |
|    |                 | as: algae, crustaceans, and fish                                          |        |
|    |                 | 9 Bioaccumalation- POPs could persist in the environment,                 |        |
|    |                 | bioaccumalate through the food chain and effect human health and          |        |
|    |                 | environment.                                                              |        |
|    |                 | 10 However a lack of bioaccumulation data for TCS and TCC in edible       |        |
|    |                 | plants makes this task implausible, and therefore merits further          |        |
|    |                 | attention                                                                 |        |
|    |                 | 11 The possibility of bioaccumulation of a varity of substances is        |        |
|    |                 | concerning, and it should be further investigated, mainly in Latin        |        |
|    |                 | America, a continent with an extremely high biodiversity.                 |        |

| 21 | Collaboration of expertise | 1 REEs: The establishment of regionally and internationally -funded      | 11     |
|----|----------------------------|--------------------------------------------------------------------------|--------|
|    |                            | research centres and collaborative networks to pool scarce analytical    | (0.9%) |
|    |                            | research facilities, financial and human resources from various          | [16]   |
|    |                            | countries, with individual countries providing pilot study sites, is one |        |
|    |                            | option                                                                   |        |
|    |                            | 2 REEs: Research in Africa is currently conducted by isolated research   |        |
|    |                            | groups in very few countries, with limited coordination and              |        |
|    |                            | communication among the groups.                                          |        |
|    |                            | 3 1,4 -dioxane: research to establish a health-based drinking water      |        |
|    |                            | targets.                                                                 |        |
|    |                            | 4 Variations in state guidance values for 1,4-dioxane demonstrates the   |        |
|    |                            | lack of consensus on the methodology to derive a health-based target.    |        |
|    |                            |                                                                          |        |
|    |                            | 6 Emerging/persistent contaminants/pathogens: a water reference          |        |
|    |                            | laboratory should be established in S Africa that would support the      |        |
|    |                            | monitoring labs                                                          |        |
|    |                            | 7 Fluorescent sensors for screening ECP in water: the development of     |        |
|    |                            | South African guideline values or water quality limits for ECPs should   |        |
|    |                            | receive attention from policy makers in order to safeguard human health  |        |
|    |                            | The DOH and the DWS are encouraged to partner with the WRC to            |        |
|    |                            | invest in the further development and ultimate use of novel monitoring   |        |
|    |                            | technologies which can enhance and complement the current status quo     |        |
|    |                            | regarding water management                                               |        |
|    |                            | 8 Reclamation of municipal waste water for drinking water: DWS           |        |
|    |                            | should help water service providers (municipalities and water boards)    |        |
|    |                            | to have access to proficient scheme and plant managers, and skilled      |        |
|    |                            | process controllers, by funding training programmes for scarce skills    |        |
|    |                            | (such as membrane treatment plant operation).                            |        |

| Although DWS could take the lead in this regard, they should be closely assisted by other departments and institutions, such as CoGTA, |  |
|----------------------------------------------------------------------------------------------------------------------------------------|--|
| SALGA, doh, ETC in the implementation thereof                                                                                          |  |
| 9 CECs in wastewater treated for direct potable reuse: It is imperative                                                                |  |
| that a national (virtual) centre for analysis of contaminants of concern                                                               |  |
| (including all specialized chemical and microbiological analyses) be                                                                   |  |
| established, consisting of a network of laboratories,. More specifically,                                                              |  |
| More specifically, the following is proposed:                                                                                          |  |
| 2.1 that a national laboratory network for advanced water quality                                                                      |  |
| analysis be established, which will have the framework of a virtual                                                                    |  |
| centralized facility, but consist of regional laboratory networks in four                                                              |  |
| of the provinces: W Cape, Gauteng, KZN, and Free State                                                                                 |  |
| 2.2 is is the intention that the national lab network for advanced water                                                               |  |
| quality analysis will:                                                                                                                 |  |
| A facilitate regional b cooperation between the labs                                                                                   |  |
| B Propose validated, SOPs                                                                                                              |  |
| 2.3 provide competitive analysis cost (different packages) for WSPs:                                                                   |  |
| Develop regional capacity and expertise for specialized water quality analysis,                                                        |  |
| Promote the exchange of scientific data and technical knowledge                                                                        |  |
| 2.4 Financial and institutional support from the Dept of water and                                                                     |  |
| Sanitation will be crucial in ensuring the success and sustainability of                                                               |  |
| the water reuse regional laboratory networks                                                                                           |  |
| The DWS is the sector leader, and as such, needs to make the case for                                                                  |  |
| the importance of credibility in water quality testing                                                                                 |  |
| Private-public partnerships could also be a viable option for this                                                                     |  |
| purpose, either as part of the Strategic Water Partners Network or                                                                     |  |
| something similar.                                                                                                                     |  |
| 10 Urban wastewater epidemiology: Gaps in knowledge, research,                                                                         |  |
| policy:                                                                                                                                |  |

|    |             | Collaboration between scientific disciplines and governing bodies                                                                                                                     |                      |
|----|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|    |             | 11 Microplastic pollution: recommendation: reduce, reuse, recycle, redesign and recover plastics as far as possible:                                                                  |                      |
|    |             | Need a collective effort between global institutions, governments, manufacturers, retailers and consumers alike.                                                                      |                      |
| 22 | Information | 1 Most of the information on algal blooms available is from 21 countries, in the peripheral parts of the continent, with a large information gap in the more central countries.       | 11<br>(0.9%)<br>[16] |
|    |             | 2 There needs to be a serious effort to consolidate information and technologies available within the continent to aid in curbing the water issues facing Africa.                     |                      |
|    |             | 3 Their presence of anti-microbial compounds in potable drinking water<br>has not been well explored. There is no information of antibiotics in<br>potable drinking water in S Africa |                      |
|    |             | 4 There is currently no information indicating the hydrolysis of firstline<br>antitubercular drugs in aquatic environments                                                            |                      |
|    |             | 5 Information on microbial pathogens of known and emerging concern<br>in source and treated drinking water - lack of data                                                             |                      |
|    |             | 6 Limited ecotoxicity information; robust assessments could not be<br>performed for most of the rapidly urbanisisng and large geographic<br>regions of the world                      |                      |
|    |             | 7 Data- Relatively limited information from many regions, including developing countries and rapidly urbanising areas in Africa, Latin America and Asia.                              |                      |
|    |             | 8 The consolidation of standard measurements and parameters is a key<br>factor in having comparable and informative data on the state of toxic<br>blooms in the continent as a whole  |                      |
|    |             | 9 Information on HNPs /halogenated natural products is frequently not available                                                                                                       |                      |

|    |                           | 10 Aquatic microbial diversity: The need for information on which taxa<br>are metabolically active in resident microbial communities is<br>particularly important as a tool for monitoring episodic anthropogenic<br>pollution in urbanized estuaries such as Swartkops systems11 Brominated flame retardants: Phosphorous flame retardants which<br>have also replaced the BFRs should be monitored in water systems<br>since information on these is still scarce in South Africa |                     |
|----|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 23 | Priority Contaminant List | 1 The number of chemicals produced and consumed rises every day and<br>new info about their consequences in the environment are discovered                                                                                                                                                                                                                                                                                                                                          | 9<br>(0.7%)<br>[17] |
|    |                           | Therefore, priority lists must be updated periodically and should be<br>always based on up-to-date information and data (occurrence,<br>determination, toxicology) obtained in the country or target area.                                                                                                                                                                                                                                                                          |                     |
|    |                           | 2 Chemical/environmental Priority Substances List                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
|    |                           | 3 Priority Chemical Contaminant List- a potential source for new<br>analytes to be considered for future studies is USEPAs Contaminant<br>Candidate List                                                                                                                                                                                                                                                                                                                            |                     |
|    |                           | 4 Priority Chemical Contaminant List- Non-steroidal anti-<br>inflammatory drugs remaining in environment are a kind of priority<br>hazard substances                                                                                                                                                                                                                                                                                                                                |                     |
|    |                           | 5 Targeted EPV-Ketoprofen: another first line NSAID with comparable<br>or even higher global consumption than diclofenac in human and<br>veterinary medicine, is also one of potential candidates as priority<br>substance for targeted EPV                                                                                                                                                                                                                                         |                     |
|    |                           | 6 Priority contaminant List: Cimetidine, diphenylhydramine and ranitidine were commonly reported antihistamines                                                                                                                                                                                                                                                                                                                                                                     |                     |
|    |                           | 7 Priority Contaminant List : Perchlorate is a ubiquitous water contaminant, of environmental concern due to its inhibitory effect on mammalian thyroid function.                                                                                                                                                                                                                                                                                                                   |                     |

|    |                            | <ul> <li>8 Development of internationally harmonised assessment criteria for prioritised contaminants specially adapted for blue mussel sentinels</li> <li>9 Along with the antibiotics of common usage, the emerging contaminant candidate list should include: nevirapine, efavirenz, carbamazepine, methocarbamol, venlafaxine (hydrochloride) and bromacil. They are contaminants that require operational monitoring in South African urban waters.</li> </ul> |                     |
|----|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 24 | Water pollution/mitigation | 1 Water pollution mitigation- Assessment of voluntary schemes and design of approaches for other contexts,                                                                                                                                                                                                                                                                                                                                                          | 9<br>(0.7%)<br>[17] |
|    |                            | 2 Water pollution mitigation- Collaboration between researchers and farmers                                                                                                                                                                                                                                                                                                                                                                                         |                     |
|    |                            | 3 Toxic elements: pollution control and remediation measures should<br>be practiced to prevent further deterioration of water quality                                                                                                                                                                                                                                                                                                                               |                     |
|    |                            | 4 CECs in recycling/reuse: sewage is contaminating fish stock wild caught in the marine environment                                                                                                                                                                                                                                                                                                                                                                 |                     |
|    |                            | 5 CECs in recycling/reuse : prevent release of untreated or partially treated sewage to ocean or surface water                                                                                                                                                                                                                                                                                                                                                      |                     |
|    |                            | 6 Polycyclic aromatic hydrocarbons: evaluation of fish species<br>composition and numbers to further describe pollution effects in the<br>system                                                                                                                                                                                                                                                                                                                    |                     |
|    |                            | 7 Agricultural chemicals: Given the chllenges related to monitoring<br>(due to the transient nature of contamination) and that pesticide<br>contamination in water resources occurs primarily as a result of<br>nonpoint sources (runoff, leaching) further research should focus on<br>modelling techniques aimed at assessing the fate, transport and<br>mitigation/management options of pesticides in water at multiple scales<br>(field to catchment)          |                     |

|    |                                                      | <ul> <li>8 Microplastic pollution: the problem with microplastic pollution of freshwater resources might be more significant than we think</li> <li>9 Microplastic pollution: when microplastics contaminated water and soil are used for drinking and crop production, water and food security as well as the well being of the population may be affected.</li> </ul>                                                                                                                               |                    |
|----|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 25 | Transfer mechanism of antibiotic<br>resistance genes | <ul> <li>1 It has been hypothesized that the presence of antimicrobial residues<br/>in the aquatic environment may select for bacterial strains that are<br/>resistant to antibiotics. Their presence may facilitate the development<br/>of antibiotic resistance and transfer of these antibiotic resistance genes<br/>to human pathogens</li> <li>2 Serpentinitic ultramafic geological environments)/SUGEs: transfer<br/>mechanisms, using mass balance analysis, isotopic tracers, and</li> </ul> | 6<br>(0.5)<br>[18] |
|    |                                                      | <ul> <li>speciation modelling</li> <li>3 Antibiotic resistant bacteria and genes: considerable body of knowledge is being generated to establish the occurrence of antibiotics, ARB and ARGs in aquatic systems, particularly in drinking water distribution systems.</li> </ul>                                                                                                                                                                                                                      |                    |
|    |                                                      | <ul> <li>How environmental conditions affect the associated genetic and metabolic changes is not clearly understood</li> <li>4 Drug resistant microorganisms: The contribution of drinking water chemicals disinfectants on the development of resistance profiles is an issue which requires further investigation</li> </ul>                                                                                                                                                                        |                    |
|    |                                                      | <ul> <li>5 Microplastics and pharmaceuticals as drivers of antimicrobial resistance: factors that affect release, transformation, persistence and transportation in surface and ground waters</li> <li>6 Antimicrobials/antibiotic resistant bacteria: the presence, distribution and dynamics of antibiotic resistance genes in the ARBs be investigated</li> </ul>                                                                                                                                  |                    |

| 26 | Resources | 1 Lack of funds, sophisticated analytical tools, international. H and       | 6      |
|----|-----------|-----------------------------------------------------------------------------|--------|
|    |           | awareness may be some factors responsible for deficiencies in studies,      | (0.5%) |
|    |           | on the analysis of PBDEs in developing countries especially in Africa       | [18]   |
|    |           | 2 Pesticides: the capacity to determine environmental concentrations of     |        |
|    |           | pesticides is urgently needed in South Africa                               |        |
|    |           | Dedicated but affordable, analytical facilities are needed to validate      |        |
|    |           | working concentrations as well as environmental concentrations of           |        |
|    |           | pesticides                                                                  |        |
|    |           | 3 Rare earth elements (REEs: To better understand the environmental         |        |
|    |           | and human health risks associated with REEs, appropriate advanced           |        |
|    |           | analytical facilities, research funding and expertise are required, yet all |        |
|    |           | of these are currently lacking in most African countries                    |        |
|    |           | 1 Reclamation of municipal ww for drinking water: DWS should help           |        |
|    |           | water service providers (municipalities and water boards) to have           |        |
|    |           | access to proficient scheme and plant managers, and skilled process         |        |
|    |           | controllers, by funding training programmes for scarce skills (such as      |        |
| -  |           | membrane treatment plant operation).                                        |        |
|    |           | Although DWS could take the lead in this regard, they should be closely     |        |
|    |           | assisted by other departments and institutions, such as CoGTA,              |        |
|    |           | SALGA, DOH, et., in the implementation thereof                              |        |
|    |           | 2 CECs in ww treated for potable reuse: A further important factor, and     |        |
|    |           | one that needs to be addressed from the outset, is the need for well-       |        |
|    |           | trained and experienced personnel and managers for the regional             |        |
|    |           | laboratory networks                                                         |        |
|    |           | Follow-up projects by the WRC, WISA, universities, water boards, and        |        |
|    |           | the Energy and Water Sector Education and Training Authority will be        |        |
|    |           | required to create an enabling climate for planning staffing and career     |        |
|    |           | development in the regional lab networks.                                   |        |
|    |           | 3 CECs in water treated for potable reuse: evaluation of indicative         |        |
|    |           | removal potential                                                           |        |

|    |           | Since the project team was not able to collect 24 hr composite samples,<br>it is difficult to evaluate the indicative removal potential of the<br>treatment units since plug flow characteristics can be observed when<br>taking grab samples,It is therefore recommended that sufficient resources be allocated in<br>future studies that will allow for 24hhr composite sampling to be<br>performed |                    |
|----|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 27 | Education | 1 Education of communities on CECs pollution                                                                                                                                                                                                                                                                                                                                                          | 6<br>(0.5)<br>[18] |
|    |           | 2 Awareness/public education-creating awareness through education of<br>the public, private and government sectors will go a long way in<br>reducing the entry of microplastics into the environment                                                                                                                                                                                                  |                    |
|    |           | 3 REEs: Public awareness on the potential existence, sources, and<br>human health risks of REEs in drinking water, especially in sub-<br>Saharan Africa                                                                                                                                                                                                                                               |                    |
|    |           | 4 Raising free-range cattle and chicken should be avoided in the vicinity<br>of municipal dumpsites, and the local residents should be informed<br>about the high risk of exposure to PBDEs and other POPs accumulating<br>in their food                                                                                                                                                              |                    |
|    |           | 5 Emerging chemical pollutants: The creation of a universally accepted<br>standard definition surrounding what exactly an ECP is and which<br>compounds from part of this definition will greatly aid in the science of<br>analyzing and studying ECPs                                                                                                                                                |                    |
|    |           | 6 CECs in recycling/reuse: initiate a chemical awareness campaign to consumers                                                                                                                                                                                                                                                                                                                        |                    |
| 28 | Behaviour | 1 The conduct of ECs under traditional sewage treatment and advanced treatment techniques                                                                                                                                                                                                                                                                                                             | 6<br>(0.5)         |

|    |             |                                                                                                                                                                                                                                                                                                                                              | [18]               |
|----|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|    |             | 2 Behavior of mixtures                                                                                                                                                                                                                                                                                                                       |                    |
|    |             | 3 Behaviour: there are no detailed studies addressing the behaviour and dynamics of PPCPs in freshwater systems,                                                                                                                                                                                                                             |                    |
|    |             | 4 Limited reviews have investigated sources, behaviour and health risks<br>of antimicrobial resistance genes (ARGS) in the wastewater-human<br>pathway.                                                                                                                                                                                      |                    |
|    |             | 5 Drug-resistant microorganisms: a followup WRC study is thus<br>underway, the overall goal of which is to establish methodologies to<br>monitor the dynamics of antibiotic resistant bacteria and genes in raw<br>and final water samples drinking water samples in selected<br>conventional and advanced drinking water plants in S Africa |                    |
|    |             | 6 Antimicrobials/antibiotic resistant bacteria: the presence, distribution<br>and dynamics of antibiotic resistance genes in the ARBs be investigated                                                                                                                                                                                        |                    |
| 29 | Interaction | 1 DCF: Interactions with other pollutants: with metals, inorganics, organics                                                                                                                                                                                                                                                                 | 6<br>(0.5)<br>[18] |
|    |             | 2 Interaction with other environmental stressors                                                                                                                                                                                                                                                                                             |                    |
|    |             | 3 The potential synergistic or antagonistic interactions between args and environmental stressors are not considered.                                                                                                                                                                                                                        |                    |
|    |             | 4 Future work to consider interactions between TCS and TCC as a mixture, and the impact on the aquatic organisms where effects may be antagonistic, additive, or synergistic such that individual chemicals effects can either be reduced or enhanced                                                                                        |                    |
|    |             | 5 Agricultural pesticides: Also of great concern is the potential for<br>atrazine to act synergistically with other pesticides to increase their<br>toxic effects                                                                                                                                                                            |                    |

|    |        | 6 Microplastics and pharmaceuticals as drivers of antimicrobail                                                                                                          |        |
|----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|    |        | resistance: investigate the interaction of microplastics, bacteria, and antimicrobial resistance                                                                         |        |
|    |        |                                                                                                                                                                          |        |
| 30 | Policy | 1 New and innovative policy and mechanisms at national level should                                                                                                      | 5      |
|    |        | be implemented to acquire market, and toxicity data to bridge such gaps                                                                                                  | (0.4%) |
|    |        | in order to support risk assessment of ECs as experimental data for such<br>chemicals is often missing or highly scarce                                                  | [19]   |
|    |        | . In order to address these and similar shortcomings, the link between groundwater, groundwater dependent sectors and groundwater                                        |        |
|    |        | governance needs to be understood and communicated, both in policy<br>and in practice.                                                                                   |        |
|    |        | 2 This case study highlights the need for strategies to limit                                                                                                            |        |
|    |        | contamination of the water resource given the predicted future                                                                                                           |        |
|    |        | expansion of Sub-Saharan urban centres                                                                                                                                   |        |
|    |        | 3 Microplastics and pharmaceuticals as drivers for antimicrobial resistance:                                                                                             |        |
|    |        | 1 Following the action taken in other parts of the world, eg USA,                                                                                                        |        |
|    |        | Sweden, UK, elsewhere, SA needs to consider the immediate ban on                                                                                                         |        |
|    |        | the import, manufacture, use, formulation, sale, and export of microbeads in products                                                                                    |        |
|    |        | 2 as an example, in sept.2002, the SA government, reps of labour and of industry, signed a memorandum of agreement concerning use of disposable polythene shopping bags. |        |
|    |        | Research conducted in 2010 showed a continued increase in carrier-bag                                                                                                    |        |
|    |        | consumption will continue over time, despite the price increases.                                                                                                        |        |
|    |        | Thus, it may be imperative to review and tighten SAs responses to<br>plastic pollution. Implementation of the Waste RDI roadmap needs to                                 |        |
|    |        | be strengthened in order to provide much needed guidance on waste management in SA environment.                                                                          |        |

| 3 Although plastic does not seem to feature much as one of the w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vater |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| quality concerns in SA, increasing awareness raising, most likely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| reduce the consumption of single use plastics, and increase the us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| value added plastics, thereby reducing environmental plastic pollut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| 4 Plastic packaging seems to be the most obvious and vis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sible |
| component of inland plastics pollution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| Given market forces and few regulations, meaning voluntary reduc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| of the plastic components of packaging, or promoting the us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e of  |
| recyclable or re-usable plastics (which are more expensive), see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eems  |
| remote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| However, even remote opportunities can be advanced, and t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hese  |
| opportunities should be investigated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| There is an opportunity to harness the circular economy conception of the circular economy concepting economy conception of the circular economy conception | t for |
| redefine products and services to design waste- out, while minimi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| negative impacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0     |
| 3 Education                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| The inclusion of waste management into the education curricul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | la is |
| important. Currently, training is only offered at higher education I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| at CSIR and NWU in partnership offers a BSc Hons cours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| Environmental Sciences (specialization in waste management)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| Masters degree in waste management, as implementing agency of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | i the |
| Department of Science and Technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1     |
| 4 Urban wastewater epidemiology: Gaps in knowledge, resea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | arch, |
| policy:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 5 Microplastic pollution: The aim would be not to ban plastics, lik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| international treaty, but that countries need to adhere to an international treaty is a set of the | ional |
| negotiated set of standards and practices to protect human health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and   |
| the environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |

| 31 | Resistance/Persistence | 1 POPs could persist in the environment, bioaccumalate through the food chain and effect human health and environment.                                                                                                                                                         | 5<br>(0.4%)<br>[19] |
|----|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|    |                        | 2 Further ERY contributions to antibiotic resistance development from<br>other sources, including landfill leachates, require additional study,<br>particularly in rapidly urbanising areas.                                                                                   |                     |
|    |                        | 3 Monitoring -studies investigating antimicrobial resistance along the whole source-wastewater-human pathway are still lacking.                                                                                                                                                |                     |
|    |                        | 4 Most anti microbial drugs are perpetually replaced in aquatic<br>environment due to their continued use. Their occurrence and<br>persistence in the aquatic environment is of great concern as far as<br>balanced aquatic ecosystems and public health impacts are concerned |                     |
|    |                        | 5 Microplastics and pharmaceuticals as drivers of antimicrobial resistance: factors that affect release, transformation, persistence and transportation in surface and ground waters                                                                                           |                     |
| 32 | Bioassay               | 1 Bioassay- consideration in the use and reporting of in vitro bioassay<br>data; combining in vitro and in vivo bioassays and chemical analyses<br>of estogenicity provides a considerable advantage as opposed to using<br>only one method                                    | 5<br>(0.4%)<br>[19] |
|    |                        | 2 Bioassay -the use of in vitro bioassays to compensate for the inability to identify interactions of toxicant mixtures                                                                                                                                                        |                     |
|    |                        | 3 Applying bioactivity measures to water quality monitoring has the<br>potential to permit more comprehensive evaluation of water quality<br>efficiently and effectively and guide further testing and assessment                                                              |                     |
|    |                        | 4 Bioassay - use of in vitro: development of effective techniques<br>adapted to a variety of media, and a change in the regulatory construct<br>to one that is not focused                                                                                                     |                     |
|    |                        | 5 Aquatic toxicity testing: Recommendations regarding selection of bioassays should be reassessed in light of data presented here                                                                                                                                              |                     |
| 33 | Poporting                            | 1 Improve reporting the reproducibility and replicability of studies                                                                                             | 5                   |
|----|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 55 | Reporting                            | 1 Improve reporting: the reproducibility and replicability of studies<br>could be improved by better standardised reporting of methods and data                  | 5<br>(0.4%)<br>[19] |
|    |                                      | 2 It would also help avoid typographical errors if all publications used<br>the same units of measurement when reporting concentrations in water                 |                     |
|    |                                      | 3 arb and genes in drinking water: It is also important that findings from studies such as this one should be circulated to the relevant stakeholders.           |                     |
|    |                                      | Such data must also be made available to communities in such a manner<br>that would make it easily understandable to all members                                 |                     |
|    |                                      | 4 In light of Africa's unique vulnerability to climate change, as opposed<br>to other continents, knowledge dissemination and collective research is<br>critical |                     |
|    |                                      |                                                                                                                                                                  |                     |
| 34 | Partitioning of CECs to solid matter | 1 Limited information is available on the partitioning of ARGS between<br>the various solid and aqueous phases.                                                  | 4<br>(1.3%)<br>[21] |
|    |                                      | 2 SUGEs: phase partitioning, speciation and transfer mechanisms,<br>using mass balance analysis, isotopic tracers, and speciation modelling<br>and               |                     |
|    |                                      | 3 Very few studies have quantified the potential of EC sorption to algal biomass                                                                                 |                     |
|    |                                      | 4 PCBs: Most of the PCBs are bound to the soil and sediments and may<br>be released to the water slowly over a long period of time                               |                     |
| 35 | Chiral contaminants                  | 1 Stereoselectivity of chiral pharmaceuticals in WWTPs                                                                                                           | 4<br>(0.3%)<br>[20] |

|    |                                                | 2 Potential effects of chiral pharmaceuticals on non-target plants and animals                                                                                                                                                                                                                                                    |                     |
|----|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|    |                                                | <ul> <li>3 Enantioselectivity of chiral contaminants</li> <li>4 Development of enantioselective methods for profiling chiral APIs which can interact differently with biological organisms, exhibiting different pharmacokinetics is gaining interest in the scientific community and is recommended in future studies</li> </ul> |                     |
|    |                                                |                                                                                                                                                                                                                                                                                                                                   |                     |
| 36 | Retention of contaminants by plastic particles | 1 Microplastic pollution; Microorganisms can also attach to these tiny plastic particles                                                                                                                                                                                                                                          | 3<br>(0.2%)<br>[21] |
|    |                                                | This means that microplastics can carry persistent organic pollutants<br>and toxins over long distances                                                                                                                                                                                                                           |                     |
|    |                                                | 2 Microplastics and pharmaceuticals as drivers of antimicrobial resistance: factors that affect release, transformation, persistence and transportation in surface and ground waters                                                                                                                                              |                     |
|    |                                                |                                                                                                                                                                                                                                                                                                                                   |                     |

# Table S4 Some typical Classes of CECs

| Number | Class                                                                              | Sub-class                                                    | Example                                                                                           |
|--------|------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
|        | CHEMICAL                                                                           |                                                              |                                                                                                   |
|        | Algal toxins                                                                       |                                                              |                                                                                                   |
|        | Brominated contaminants                                                            |                                                              |                                                                                                   |
|        | Flame retardants                                                                   | Brominated, chlorinated, organo-phosphate based              |                                                                                                   |
|        | Chlorinated contaminants                                                           |                                                              |                                                                                                   |
|        | Chlorinated paraffins                                                              |                                                              |                                                                                                   |
|        | Cosmetics products                                                                 |                                                              |                                                                                                   |
|        | Current-use pesticides                                                             |                                                              |                                                                                                   |
|        | Detergents and detergent metabolites<br>(hereinafter referred to as "detergents"), |                                                              | Triclosan<br>chlorophene                                                                          |
|        | Endocrine-disrupting chemicals (EDCs)                                              | alkylphenols (APs),<br>phenolic compounds;<br>xenoestrogens; | bisphenol A (BPA),<br>paraben<br>nitrophenol; phenol;<br>estradiol;<br>17-alpha-ethinylestradiol) |
|        | Engineered nanomaterials                                                           |                                                              |                                                                                                   |
|        | Fragrances                                                                         |                                                              | Polycyclic musk                                                                                   |
|        | Halogenated natural products                                                       |                                                              |                                                                                                   |

| Herbicides                                                                           |                      |                   |
|--------------------------------------------------------------------------------------|----------------------|-------------------|
| Hexachlorobutadiene                                                                  |                      |                   |
| Hormones                                                                             |                      |                   |
| Household chemicals and food additives                                               | Plasticiser          | Bisphenol A       |
| Illicit drugs                                                                        |                      |                   |
| Industrial compounds/chemicals                                                       | Flame retardants     | ТДСРР, ТСЕР       |
|                                                                                      | x-ray contrast fluid | Iopromide         |
|                                                                                      | РАН                  | Benzo(a)pyrene    |
| Life style products/ lifestyle compounds<br>(LS)                                     |                      |                   |
| Manufactured nanoparticles                                                           |                      |                   |
| Many substances used in daily life,<br>ranging from pharmaceuticals to<br>detergents |                      |                   |
| Marine plastics                                                                      |                      |                   |
| Metabolites/transformation products                                                  |                      |                   |
| Microplastics                                                                        |                      |                   |
| nanomaterials                                                                        |                      | TiO2,             |
|                                                                                      |                      | ZnO               |
| Natural chemicals                                                                    | Stimulant            | Caffeine          |
|                                                                                      | Hormone              | 17-beta-estradiol |
| New unintentionally generated PCBs                                                   |                      |                   |

| Newly formulated pesticides<br>(specifically chlorpyrifos and pyrethroid<br>pesticides)                     | specifically chlorpyrifos and pyrethroid pesticides     | chlorpyrifos                                        |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|
| Organochlorine pesticides                                                                                   |                                                         |                                                     |
| Organotins                                                                                                  |                                                         |                                                     |
| Other emerging pollutants;                                                                                  |                                                         |                                                     |
| Other organic compounds used in<br>everyday domestic, agricultural, and<br>industrial applications<br>PAHs, |                                                         |                                                     |
| PCBs                                                                                                        |                                                         |                                                     |
| Per and polyfluoroalkyls<br>perfluorinated compounds (PFCs)<br>PFAS/PFOS/forever chemicals                  |                                                         | Perfluorodecanoic acid                              |
| persistent organic Pollutants (POPs)                                                                        |                                                         |                                                     |
| Personal care product (PCP)/<br>personal-use products                                                       | Disinfectant/antimicrobial<br>Fragrance<br>preservative | Triclosan, chlorophen<br>Polycyclic musk<br>paraben |
| Pesticides                                                                                                  | algicide;<br>herbicide;<br>biocide;                     | Simazine<br>Atrazine, terbutylazine                 |
|                                                                                                             | fungicide;<br>insecticide;<br>fumigants;                | Imidacloprid                                        |

|                                                                                    | attractants)                                                                                                                                                                                                                                           |                                                                                                                                |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Pharmaceuticals/<br>pharmaceuticals products<br>(prescription and nonprescription) | antifications)<br>antifications)<br>anti-diabetics;<br>anti-diabetics;<br>anti-epileptic;<br>anti-microbial;<br>anti-inflammatories; analgesics;<br>anti-malarial;<br>anti-ulcer; antihistamine;<br>anti-depressant;<br>beta-blocker<br>antiretroviral | SulfamethoxazoleSulfonylureaCarbamazepinePenicillinDiclofenacParacetamolCinchonidineRanitidineBenzodiazepineatenololLamivudine |
| Phthalates                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                |
| Plasticizers                                                                       |                                                                                                                                                                                                                                                        |                                                                                                                                |
| Platinum group elements (PGE)                                                      |                                                                                                                                                                                                                                                        |                                                                                                                                |
| Polychlorinated naphthalenes                                                       |                                                                                                                                                                                                                                                        |                                                                                                                                |
| Polycyclic aromatic hydrocarbons<br>(PAHs)                                         |                                                                                                                                                                                                                                                        |                                                                                                                                |
| Radionuclides                                                                      |                                                                                                                                                                                                                                                        |                                                                                                                                |
| Rare earth elements                                                                |                                                                                                                                                                                                                                                        |                                                                                                                                |
| <br>Residues                                                                       |                                                                                                                                                                                                                                                        |                                                                                                                                |
| Short chain chlorinated paraffins                                                  |                                                                                                                                                                                                                                                        |                                                                                                                                |

| Siloxanes                                                                                                                               |            |                               |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------|
| Stanols                                                                                                                                 |            |                               |
| Steroidal hormones                                                                                                                      |            |                               |
| Steroids                                                                                                                                |            |                               |
| Sterols                                                                                                                                 |            |                               |
| Various trace elements                                                                                                                  |            |                               |
| Water treatment by-products                                                                                                             | By-product | NDMA<br>Nitrosodi-methylamine |
| MICROBIOLOGICAL                                                                                                                         |            |                               |
| antibiotic resistant bacteria and<br>resistance genes (ARBs and ARGs)<br>produced as a result of mutation due to<br>antibacterial drugs |            |                               |
| sapoviruses                                                                                                                             |            |                               |
| Waddlia chondrophila                                                                                                                    |            |                               |
| <br>Streptococcus parauberis                                                                                                            |            |                               |
| Human enteric bacteria and viruses                                                                                                      |            |                               |
| <br>microbial pathogens (e.g., E Coli, rotavirus, Crypto, etc                                                                           |            | E Coli, rotavirus, Crypto,    |
| infectious biological water contaminants                                                                                                |            | E Coli isolates               |
| cyanobacterial blooms is)                                                                                                               |            | Microcystis                   |

# Table S5 Reported matrices analysed for CECs

| No. | Water               | Waste:                            | Solid                        | Biota                     | Food          | Other:                        |
|-----|---------------------|-----------------------------------|------------------------------|---------------------------|---------------|-------------------------------|
|     | Raw                 | Water,                            |                              |                           |               | Air                           |
|     | source              | other                             |                              |                           |               | Human                         |
| 1   | groundwater         | raw                               | sediment                     | porpoise                  | beer          | blood plasma                  |
| 2   | raw source<br>water | treated                           | soil                         | sharks                    | cereal        | milk                          |
| 3   | river               | industrial                        | suspended particulate matter | peregrine falcon<br>eggs  | sea food      | human                         |
| 4   | dam                 | sludge                            | suspended solid              | bats                      | fish          | clinical stool                |
| 5   | lake                | landfill                          | dust                         | marine organisms          | chicken       | source separated urine        |
| 6   | river basin         | landfill<br>leachate              | surface sediment             | food web                  | vegetable     | cultures                      |
| 7   | tap                 | agricultural<br>water             | bank soil                    | higher order<br>predators | meat          | air                           |
| 8   | drinking            | acid mine<br>drainage             | SUGE: soil systems           | aquatic organisms         | eggs          | atmospheric aerosol and gases |
| 9   | bottled             | waste/dump<br>landfills           | Surficial/surface sediment   | land-based<br>ecosystems  | cereal        | SUGE: atmospheric systems     |
| 10  | rain                | sewage<br>sludge                  | particulate phase            | land environment          | baby food     | urban residential areas       |
| 11  | ice                 | run-off                           | sediment from river<br>water | ocean<br>environment      | food products | medical facilities            |
| 12  | sea                 | drainage                          | marine sediment              | non-human                 | edible fish   | Worm plant                    |
| 13  | estuary             | wastewater<br>treatment<br>plants | sediment in rivers           | plankton                  | chicken eggs  |                               |
| 14  | well                | effluent                          | beach sand                   | fish                      | cow milk      |                               |

| 15 | aquifier                          | agricultural<br>run-off                                                                                                                 | sediment in estuaries | invertebrates                               | tuna                   |  |
|----|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------|------------------------|--|
| 16 | marine<br>environment             | resource<br>upstream and<br>downstream<br>from sites in<br>following<br>sectors:<br>municipal,<br>agriculture,<br>industrial,<br>mining | sediment in canals    | tissue of aquatic<br>organisms              | poultry                |  |
| 17 | iceberg                           | influent/<br>effluent<br>wastewater                                                                                                     |                       | Whale sharks:<br>skin biopsies              | fish: tissue,<br>blood |  |
| 18 | ocean<br>environment              | municipal<br>wastewater                                                                                                                 |                       | Blue mussels                                | food sources           |  |
| 19 | tropical urban catchment          | reclaimed<br>wastewater                                                                                                                 |                       | Guppy                                       |                        |  |
| 20 | public source                     | wastewater<br>from<br>paper/pulp<br>effluent                                                                                            |                       | biological and<br>environmental<br>matrices |                        |  |
| 21 | public<br>drinking                |                                                                                                                                         |                       | water birds:<br>faecal samples,<br>feathers |                        |  |
| 22 | Polar Region<br>water<br>supplies |                                                                                                                                         |                       | terrestrial and aquatic biota               |                        |  |

| 23 | reclaimed     | Plasma of          |
|----|---------------|--------------------|
|    | water         | crocodiles         |
| 24 | estuarine     | Tissue of tilapia  |
|    | system        |                    |
| 25 | coastal       | porpoise           |
|    | system        |                    |
| 26 | reservoir     | Liver and blood    |
|    |               | from Predators:    |
|    |               | caracal, otter,    |
|    |               | genet, honey       |
|    |               | badger,            |
|    |               | mongoose, Eagle    |
|    |               | owl                |
| 27 | island        | aquatic organisms  |
| 28 | ocean         | aquatic food web   |
|    | environment   |                    |
| 29 | environmenta  | Amphibians in      |
|    | 1             | water              |
| 30 | surface       | egg shell of birds |
| 31 | catchment     | penguin eggs       |
| 32 | storm         | bird feathers      |
| 33 | surface water | Tissue polar bears |
|    | catchments    |                    |
| 34 | pore water    | Pearl millet       |
| 35 | SUGE:         | Chokka squid       |
|    | aquatic       |                    |
|    | systems       |                    |
| 36 | freshwater    | Turtle eggs        |
| 37 | salt water    | Crocodile tissue   |

| 39  | algal ponds                                                       | biota, seaweed                                                                                              |
|-----|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 40  | borehole                                                          | wetland plants                                                                                              |
| 4.1 | water                                                             |                                                                                                             |
| 41  | wetlands                                                          | fish and bird eggs                                                                                          |
| 42  | millipore<br>water                                                | aquatic animals:<br>oyster, mussel,<br>and abalone),<br>crustaceans (e.g.,<br>crabs, prawn, and<br>lobster) |
| 43  | Intertidal<br>water,                                              |                                                                                                             |
| 44  | contaminated<br>ground water                                      |                                                                                                             |
| 45  | river water<br>(upstream,<br>down stream)                         |                                                                                                             |
| 46  | sediment<br>pore water                                            |                                                                                                             |
| 47  | Reclaimed<br>Water for<br>potable<br>reuse- treated<br>wastewater |                                                                                                             |
| 48  | distribution<br>water                                             |                                                                                                             |

| 49               | water from<br>household<br>storage<br>containers |      |      |      |      |     |
|------------------|--------------------------------------------------|------|------|------|------|-----|
| Totals<br>(/118) | 49                                               | 21   | 16   | 42   | 18   | 12  |
| %                | 31                                               | 13.3 | 10.1 | 26.6 | 11.4 | 7.6 |
| Rank             | 1                                                | 3    | 5    | 2    | 4    | 6   |

MS methods: 101 papers Per and polyfluoro compounds: 18

| Number    | Definition                                                  | Includes | Includes  | Includes   | Reference            |
|-----------|-------------------------------------------------------------|----------|-----------|------------|----------------------|
| INUITIDEI | Definition                                                  | chemical |           | micro=     | Kelefence            |
|           |                                                             | chenncal | inorganic | biological |                      |
| 1         | EC                                                          |          |           | No         | [20]                 |
| 1         |                                                             | yes      | yes       | INO        | [28]                 |
|           | newer or emerging <u>organic and inorganic</u> contaminants |          |           |            | A.B. Cundy, F.M.     |
|           | (substances which are not yet, or which have only           |          |           |            | Rowlands, G. Lu,     |
|           | recently been, regulated but which may be of                |          |           |            | , WX. Wang           |
|           | environmental or human health concern), consisting of       |          |           |            | Review               |
|           | a range of pharmaceutical and personal care product         |          |           |            | A systematic         |
|           | ((specifically macrolides, diclofenac and triclosan),       |          |           |            | review of emerging   |
|           | residues (inter alia illicit drug metabolites),             |          |           |            | contaminants in the  |
|           | perfluoroalkyl compounds, plasticisers, newly               |          |           |            | Greater Bay Area     |
|           | formulated pesticides (specifically chlorpyrifos and        |          |           |            | (GBA), China:        |
|           | pyrethroid pesticides), other endocrine disrupting          |          |           |            | Current baselines,   |
|           | chemicals (specifically estradiol and bisphenol A),         |          |           |            | knowledge gaps,      |
|           | perfluorinated substances, platinum group elements          |          |           |            | and research and     |
|           | (PGE), and microplastics.                                   |          |           |            | management           |
|           |                                                             |          |           |            | priorities.          |
|           | These emerging contaminants (ECs) are derived from          |          |           |            | Environmental        |
|           | various sources, notably waste water treatment works,       |          |           |            | Science & Policy,    |
|           | e-wastes recycling, and pharmaceutical facilities, but      |          |           |            | Volume 131, May      |
|           | also from non-point sources such as run-off from            |          |           |            | 2022, Pages 196-     |
|           | streets and agricultural land. Despite their presence at    |          |           |            | 208                  |
|           | typically ug/L or sub-ug/L concentrations, residues of      |          |           |            | https://doi.org/10.1 |
|           | several ECs have been observed to cause biological          |          |           |            | 016/j.envsci.2022.0  |
|           | disruption/dysfunction, and generational effects, in        |          |           |            | 2.002                |
|           | exposed organisms via a number of mechanisms                |          |           |            |                      |
|           | including endocrine dysfunction                             |          |           |            |                      |
|           |                                                             |          |           |            |                      |

### Table S6 References for the definition of a CEC

|   | Given the global concern around these Contaminants,<br>and their relative environmental ubiquity in water,<br>sediment and biota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | EC<br>"Any synthetic or naturally occurring <u>chemical or any</u><br><u>microorganism</u> that is not commonly monitored in the<br>environment but has the potential to enter the<br>environment and cause known or suspected adverse<br>ecological and/or human health effects".<br>CECs can enter the environment through nonpoint<br>sources (for example, runoff) and point sources (for<br>example, concentrated animal feeding operations and<br>treated-effluent discharge from wastewater treatment<br>plants), which can increase concentrations of CECs<br>especially in highly populated areas<br>CECs include pharmaceuticals (prescription and<br>nonprescription), steroidal hormones, stanols, sterols,<br>detergents and detergent metabolites (hereinafter<br>referred to as "detergents"), personal-use products,<br>pesticides, polycyclic aromatic hydrocarbons (PAHs),<br>flame retardants, plasticizers, and other organic<br>compounds used in everyday domestic, agricultural,<br>and industrial applications.<br>Many substances used in daily life, ranging from<br>pharmaceuticals to detergents fall under this<br>description | yes | yes | yes | [29]<br>United States<br>Geological Survey<br>(USGS (Churchill<br>et al., 2020; Philip<br>et al., 2018)<br>Churchill, C.J.,<br>Baldys, S., III,<br>Gunn, C.L.,<br>Mobley,<br>C.A., and Quigley,<br>D.P. (2020).<br>Compounds of<br>emerging concern<br>detected in water<br>samples<br>from potable water<br>and wastewater<br>treatment<br>plants and detected<br>in water and bed-<br>sediment<br>samples from sites<br>on the Trinity<br>River, Dallas,<br>Texas, 2009–2013.<br>U.S. Geological<br>Survey |

|   |                                                                                                                                                        |     |    |    | Scientific<br>Investigations<br>Report 2019–5019,<br>1–57,<br>https://doi.org/10.3<br>133/sir20195019.                                                                                                                    |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                                                        |     |    |    | Philip, J.M.,<br>Aravind, U.K., and<br>Aravindakumar,<br>C.T. (2018).<br>Emerging<br>contaminants in<br>Indian<br>environmental<br>matrices – a review.<br>Chemosphere<br>190, 307–326,<br>https://doi.org/10.1<br>016/J. |
| 3 | CECs<br><u>Organic</u> pollutants<br>Are present in the environment<br>Might be hazardous to human and environmental<br>health<br>Originate from WWTPs | yes | no | no | [30]<br>Gunilla Oberga,<br>Annegaaike<br>Leopold<br>Review article. On<br>the role of review<br>papers in the face of<br>escalating<br>publication rates – a<br>case study of                                             |

| 4 | CECs:<br><u>chemical substances</u> from anthropogenic origin present<br>in the environment at trace and ultratrace levels (μg/L<br>– ng/ L). CECs usually refer to a wide range of<br>substances such as pesticides, pharmaceuticals,<br>personal care products, flame retardants, hormones,<br>antibiotic resistant bacteria and resistance genes<br>(ARBs and ARGs), etc., being pharmaceuticals and<br>pesticides the most frequently detected due to their<br>widespread human use.<br>CECs are continuously discharged into the<br>environment mainly through wastewater treatment<br>plant (WWTP) effluents since conventional<br>wastewater treatments are not designed to remove | yes | yes | Yes | research on<br>contaminants of<br>emerging concern<br>(CECs)<br>Environment<br>International 131<br>(2019)<br>104960: 1-16<br>https://doi.org/10.1<br>016/j.envint.2019.1<br>04960<br>[31]<br>J.C.G. Sousa, A.R.<br>Ribeiro, M.O.<br>Barbosa, M.F.R.<br>Pereira, A.M.T.<br>Silva, A review on<br>environmental<br>monitoring of water<br>organic pollutants<br>identified by EU<br>guidelines, J.<br>Hazard. Mater. 344<br>(2018) 146–162,<br>doi:10.1016/j.jhazm<br>at.2017.09.058. |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | efficiently these compounds.<br>The presence of CECs in environmental compartments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |     | at.2017.09.058.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | is a matter of current concern, mainly due to the<br>undesirable ecological and toxicological effects that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|   | T                                                         |     |    |    |                      |
|---|-----------------------------------------------------------|-----|----|----|----------------------|
|   | may cause on aquatic organisms as a consequence of        |     |    |    |                      |
|   | their persistence in receiving water bodies .             |     |    |    |                      |
| 5 | Emerging organic contaminants (EOCs)                      | yes | no | no | [32]                 |
|   | are anthropogenic <u>chemicals</u> (e.g. pharmaceuticals, |     |    |    |                      |
|   | personal care products and lifestyle compounds            |     |    |    | Jasmina Luka`c       |
|   | (PCP-LS), pesticide compounds, and per and                |     |    |    | Reberski,            |
|   | polyfluoroalkyls), that have been detected in the         |     |    |    | , Josip Terzi´c, ,   |
|   | environment due to advances in analytical techniques      |     |    |    | Louise D. Maurice,   |
|   | and for which there are growing concerns regarding        |     |    |    | Dan J. Lapworth      |
|   | their potential harmful impact on the environment.        |     |    |    | Emerging organic     |
|   | However, most EOCs are not regulated in the               |     |    |    | contaminants in      |
|   | environment or routinely monitored in groundwater.        |     |    |    | karst groundwater:   |
|   | Their properties, environmental behaviour and             |     |    |    | A global             |
|   | toxicological effects are still poorly understood. There  |     |    |    | level assessment     |
|   | are 30,000 to 70,000 registered chemicals in daily-used   |     |    |    | Journal of           |
|   | products, and about 4000 new chemicals are registered     |     |    |    | Hydrology            |
|   | every day.                                                |     |    |    | Journal of           |
|   | There are many newly emerging substances present in       |     |    |    | Hydrology 604        |
|   | the environment, which may have adverse impacts on        |     |    |    | (2022) 127242        |
|   | human health and ecosystems, for which limited            |     |    |    | https://doi.org/10.1 |
|   | occurrence data are available.                            |     |    |    | 016/j.jhydrol.2021.  |
|   | Micro-plastics are also a potentially important           |     |    |    | 127242               |
|   | emerging organic contaminant group in groundwater.        |     |    |    |                      |
| 6 | Organic Micro Pollutants                                  | yes | no | no | [33]                 |
|   | which are often also referred to as                       |     |    |    |                      |
|   | trace organic compounds, trace organic contaminants.      |     |    |    | Torsten C. Schmidt   |
|   | Since most of them are not yet regulated, they are        |     |    |    | Recent trends in     |
|   | often also classified as emerging contaminants or         |     |    |    | water analysis       |
|   | chemicals of emerging concern.                            |     |    |    | triggering future    |
|   |                                                           |     |    |    | monitoring           |

|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |            |     | of organic<br>micropollutants<br>Analytical and<br>Bioanalytical<br>Chemistry (2018)<br>410:3933–3941<br>https://doi.org/10.1<br>007/s00216-018-<br>1015-9                                                                                                                                                                                 |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 | Emerging Contaminants (ECs)/Emerging Microbial<br>Contaminants (EMCs)<br>Emerging contaminants (ECs) represent a recently<br>detected wide group of families of <u>synthetic or</u><br><u>naturally occurring compounds</u> , such as endocrine-<br>disrupting chemicals (EDCs), pharmaceuticals and<br>personal care products (PPCPs), flame retardants,<br>nanoparticles, etc<br>These compounds are omnipresent and pose risks to<br>human health and the environment. For instance,<br>prolonged exposure to EDCs such as alkylphenols<br>(APs), bisphenol A (BPA), parabens (PBs) or<br>phthalates can impact the reproductive system in<br>humans and wild life. Flame retardants and PPCPs can<br>cause neurotoxicity and impact the normal routine of<br>the endocrine system . Nanoparticles, commonly used<br>in industrial and consumer products can cause<br>cytotoxicity and cell damage. More information is<br>needed regarding their environmental risks. These<br>concerns have led the scientific community across the<br>globe to shift its focus from conventional "priority" | yes<br>Ves | yes<br>Ves | yes | [34]<br>Ravinder Kumar,<br>Arun K.<br>Vuppaladadiyam<br>Elsa Antunes,<br>Anna Whelan,<br>Rob Fearon,<br>Madoc Sheehan,<br>Louise Reeves<br>Emerging<br>contaminants in<br>biosolids: Presence,<br>fate and analytical<br>Techniques<br>Emerging<br>Contaminants 8<br>(2022) 162e194<br>https://doi.org/10.1<br>016/j.emcon.2022.0<br>3.004 |

|                                                          | 1 |
|----------------------------------------------------------|---|
| pollutants to "emerging" or "new generation"             |   |
| contaminants.                                            |   |
| ECs enter into the environment via a number of routes,   |   |
| which include municipal, hospitals, wastewater           |   |
| treatment plants (WWTPs), sewer leakage/overflow,        |   |
| and runoff from gricultural and urban areas, the         |   |
| application of biosolids and                             |   |
| treated effluent to land. From the above-mentioned       |   |
| sources of ECs, WWTPs are regarded as a major            |   |
| concentrator of ECs since they receive wastewater        |   |
| from different sources like domestic waste,              |   |
| sewage and industrial trade waste, infiltration of       |   |
| groundwaters.                                            |   |
| The range of concentrations of ECs in the effluents of   |   |
| wastewater vary from a few ng/L to mg/L, and their       |   |
| types and concentrations depend on the socioeconomic     |   |
| status of the community feeding the WWTPs.               |   |
| However, current WWTPs are traditionally not             |   |
| equipped with advanced technologies to remove ECs        |   |
| at such low concentrations. Treatment plants were        |   |
| traditionally designed with the removal of nutrients     |   |
| and organic material in mind. The insufficient removal   |   |
| of ECs leads to their accumulation either in effluent or |   |
| sludges, resulting in either the contamination through   |   |
| release of effluent to the receiving aquatic habitat or  |   |
| sorption onto biosolids/sludge.                          |   |
| Moreover, the microbial contaminants in the              |   |
| environment, more precisely, antibiotic-resistant        |   |
| genes/bacteria produced as a result of mutation due to   |   |
| antibacterial drugs, are also considered ECs and         |   |
| specifically called emerging microbial contaminants      |   |

|   | (EMCs). A few examples of EMCs are sapoviruses ,<br>Waddlia chondrophila and Streptococcus parauberis .<br>In addition, horizontal gene transfer phenomena allow<br>the transfer of genetic material between<br>microorganisms, implying that antibiotic-resistant<br>genes can be further transferred between microbial<br>populations.                                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                            |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8 | Contaminants of emerging concern (CECs),<br>such as pharmaceuticals, illicit drugs, pesticides,<br>herbicides, personal care products and each of their<br>metabolites/transformation products are being<br>ubiquitously found in a variety of environmental<br>compartments at parts per billion/trillion<br>concentrations given their widespread usage in<br>healthcare, recreational/illicit drug use, and<br>agriculture. | yes | [35]<br>Keng Tiong Ng, ,<br>Helena Rapp-<br>Wright, , Melanie<br>Egli , , Alicia<br>Hartmann,<br>,Joshua C. Steele,<br>, Juan Eduardo<br>Sosa-Hernández, ,<br>Elda M. Melchor-<br>Martínez<br>,Matthew Jacobs,<br>, Blánaid White,<br>Fiona Regan, ,<br>Roberto Parra-<br>Saldivar, , Lewis<br>Couchman, ,Rolf U.<br>Haldend, Leon P.<br>Barrona,<br>High-throughput<br>multi-residue<br>quantification of |

|   |                                                                                                                                                                                                                                                                                     |     |    |    | contaminants of<br>emerging<br>concern in<br>wastewaters<br>enabled using direct<br>injection liquid<br>chromatography-<br>tandem mass<br>spectrometry<br>Journal of<br>Hazardous<br>Materials<br>Volume 398, 5<br>November 2020,<br>122933<br>1-14<br>https://doi.org/10.1<br>016/j.jhazmat.2020.<br>122933 |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9 | Emerging organic Contaminants<br>In recent years, synthetic <u>organic</u> compounds, often<br>known as emerging organic contaminants (EOCs), are<br>becoming more of a growing international concern<br>regarding their occurrence in, and contamination of,<br>groundwater bodies | yes | no | no | [36]<br>D. Mooney, K.G.<br>Richards<br>, M. Danaher, J.<br>Grant<br>, L. Gill, PE.<br>Mellander<br>, C.E. Coxon,<br>An investigation of<br>anticoccidial                                                                                                                                                     |

|    |                                                                                                                                                                                                                                                                                                                                                                                   |     | veterinary drugs as<br>emerging organic<br>contaminants in<br>groundwater<br>Science of the Total<br>Environment<br>746 (2020) 141116,<br>1-16<br>https://doi.org/10.1<br>016/j.scitotenv.202<br>0.141116                                                                                 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | Emerging environmental contaminant<br>It is ubiquitous in environmental media, biotic<br>matrixes, and humans, and thus is deemed to be an<br>emerging environmental contaminant; a high-priority<br>compound that critically requires further<br>toxicological studies or for which regulatory measures<br>could be envisaged<br>E.g., tris(1,3-dichloro-2-propyl)phosphate<br>, | yes | [37]<br>Chen Wang, ,<br>Haibo Chen,<br>Hui Li, Jun Yu,<br>Xiaoli Wang,<br>Yongdi Liu<br>Review article<br>Review of<br>emerging<br>contaminant<br>tris(1,3-dichloro-2-<br>propyl)phosphate:<br>Environmental<br>occurrence,<br>exposure, and risks<br>to organisms and<br>human<br>Health |

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |     |    | Environment<br>International<br>Volume 143,<br>October 2020,<br>105946, 1-16<br>https://doi.org/10.1<br>016/j.envint.2020.1<br>05946                                                                                                                                                                |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11 | Contaminants of emerging concern (CECs)Among those refractory Organic Contaminants,<br>contaminants of emerging concern (CECs) are a<br>potentially important issue with respect to the<br>suspected risk of human health and to environment.One of the definitions of CECs is proposed by<br>United States Geological Survey as "any synthetic or<br>naturally occurring chemical that is not commonly<br>monitored in the environment, but has the potential to<br>enter the environment and cause<br>known or suspected adverse ecological and/or human<br>health effects". CECs include but are not limited to<br>pharmaceutical and personal care products (PPCPs),<br>perfluorinated compounds (PFCs),<br>persistent organic pollutants (POPs), and<br>nanomaterials | yes | yes | no | [38]<br>Chengdu Qi, Jun<br>Huang, Bin Wang,<br>Shubo Deng, Yujue<br>Wang, Gang Yu<br>Contaminants of<br>emerging concern<br>in landfill leachate<br>in China: A review<br>Emerging<br>Contaminants<br>Volume 4, Issue 1,<br>2018, Pages 1-10<br>https://doi.org/10.1<br>016/j.emcon.2018.0<br>6.001 |
| 12 | Chemicals of emerging Arctic concern/persistent<br>organic pollutants<br>Identified chemicals that are present/detected in the<br>Arctic but are not current regulated internationally<br>(684 in data base). They are characterized as persistent<br>organic pollutants (POPs) and as CECs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | yes | no  | no | [39]<br>Marta Plaza-<br>Hernandez,<br>Juliette Legler,<br>Matthew MacLeod                                                                                                                                                                                                                           |

| As well as including 'emerging' chemicals with POP-     | Integration of       |
|---------------------------------------------------------|----------------------|
| like characteristics; it also considers some chemicals  | production and use   |
| and groups of substances that may not meet the          | information into an  |
| classical definition of POPs                            | exposure-based       |
| These are: per-and polyfluoroalkyl substances,          | screening approach   |
| brominated flame retardants, chlorinated flame          | to rank chemicals    |
| retardants, organo-phosphate based flame retardants     | of emerging Arctic   |
| and plasticizers, phthalates, short chain chlorinated   | concern for          |
| paraffins, siloxanes, pharmaceuticals and personal care | potential to be      |
| products, polychlorinated naphthalenes,                 | planetary boundary   |
| hexachlorobutadiene, current-use pesticides,            | threats.             |
| organotins, polycyclic aromatic hydrocarbons, new       | Emerging             |
| unintentionally generated PCBs, halogenated natural     | Contaminants         |
| products, marine plastics and microplastics             | Volume 7, 2021,      |
|                                                         | 213-218              |
| The term 'chemicals of emerging concern' (CEC) is       | https://doi.org/10.1 |
| increasingly being applied to refer to environmental    | 016/j.emcon.2021.1   |
| contaminants that are gaining attention, either because | 0.001                |
| they are being newly introduced (in some cases as       |                      |
| replacements for chemicals that are                     |                      |
| being phased out or banned) or because advances in      |                      |
| analytical chemistry permit their identification and/or |                      |
| quantification in (environmental) samples with a        |                      |
| sufficient degree of reliability. The                   |                      |
| current assessment is purposely entitled Chemicals of   |                      |
| Emerging Arctic Concern because the intention here is   |                      |
| to consider CECs that are being found in the Arctic.    |                      |
| These are chemicals that may warrant consideration      |                      |
| for regulation under the Stockholm Convention.          |                      |

|    | Four criteria are used to establish whether a chemical<br>qualifies for consideration as a POP according to the<br>Stockholm Convention:<br>chemicals need to persist in the environment for<br>extended periods of time, have the potential to undergo<br>long range transport; accumulate in humans, flora or<br>fauna, and cause adverse effects. Some of the<br>chemicals of emerging Arctic concern meet these<br>criteria and are already under consideration for global<br>regulation or have yet to be assessed |     |    |                                                                                                                                                                                                                                                                                                                         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13 | Contaminants of emerging concern (CECs)<br>various pesticides and pharmaceuticals, particularly<br>interested due to their applications; to be biologically<br>active and persistent toward atmospheric conditions.<br>Such properties suggest on their long-term stability<br>and potential adverse effects in the environment.<br>Hence, these artificial products can be considered as<br>contaminants of emerging concern (CECs)                                                                                    | yes | no | [40]<br>Matija Cvetnić,<br>Mirjana Novak<br>Stankov,<br>Marin Kovačić,<br>Šime Ukić,<br>Tomislav Bolanča<br>Hrvoje Kušić,<br>Bakhtiyor Rasulev,<br>Dionysios D.<br>Dionysiou, Ana<br>Lončarić Božić<br>Key structural<br>features promoting<br>radical driven<br>degradation of<br>emerging<br>contaminants in<br>water |

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | Environment<br>International<br>Volume 124, March<br>2019, Pages 38-48<br>https://doi.org/10.1<br>016/j.envint.2018.1<br>2.043                                                                                                                                                                                                                         |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14 | Contaminants of emerging concern (CECs)<br>The main criteria for inclusion in the initial list of<br>candidate substances were that i) the substance is<br>suspected of posing a significant risk to, or via, the<br>aquatic environment, meaning there is reliable<br>evidence of hazard and of a possible exposure to<br>aquatic organisms and mammals, but ii) there is not<br>enough information to assess the EU-wide exposure<br>for the substance, i.e. insufficient monitoring data or<br>data of insufficient quality, nor sufficient modelled<br>exposure data to decide whether to prioritise the<br>substance<br>Various pesticides and pharmaceuticals, (eg,<br>trichlorfin, Imidacloprid) particularly interested due to<br>their applications; to be biologically active and<br>persistent toward atmospheric conditions. Such<br>properties suggest on their long-term stability and<br>potential adverse effects in the environment.<br>Hence, these artificial products can be considered as<br>contaminants of emerging concern (CECs) | yes | [41]<br>European<br>Commission:<br>Raquel N.<br>Carvalho, Lidia<br>Ceriani, Alessio<br>Ippolito and<br>Teresa Lettieri<br>Directive<br>2008/105/EC, as<br>amended by<br>Directive<br>2013/39/EU, in the<br>field of<br>water policy:<br>Development of the<br>first Watch List<br>under<br>the Environmental<br>Quality Standards<br>Directive<br>2015 |

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |     |    | JCR, 2018.<br>Technical Report:<br>Development of the<br>First Watch List<br>under the<br>Environmental<br>Quality Standards<br>Directive.<br>https://ec.europa.eu/<br>jrc/en/<br>publication/eur-<br>scientific-and-<br>technical-research-<br>reports/developmen<br>t-first-watch-list-<br>under-<br>environmental-<br>quality-standards-<br>directive |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 | CECs:<br>Used definition as given by US Geological Survey,<br>Reference 2<br>"any synthetic or naturally occurring chemical that is<br>not commonly monitored in the environment, but has<br>the potential to enter the environment and cause<br>known or suspected adverse ecological and/or human<br>health effects".<br>CECs include but are not limited to pharmaceutical<br>and personal care products (PPCPs), perfluorinated<br>compounds (PFCs), persistent organic pollutants<br>(POPs), and nanomaterials. | yes | yes | no | [42]<br>Chengdu Qi, Jun<br>Huang, Bin Wang,<br>Shubo Deng, Yujue<br>Wang, Gang Yu<br>Contaminants of<br>emerging concern<br>in landfill leachate<br>in China: A review<br>Emerging<br>Contaminants                                                                                                                                                       |

|    |                                                                                                                                                                                                                                                                                                                                                                     |     |     |    | Volume 4, Issue 1,<br>2018, Pages 1-10<br>https://doi.org/10.1<br>016/j.emcon.2018.0<br>6.001                                                                                                                                                                                                                                                                                                                                          |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16 | CECs<br>Used definition given by S Sauve (2014):<br>A large number of chemicals present in the<br>environment remain unknown to the scientific<br>community, or the information related to their identity<br>and physicochemical properties is limited. These<br>chemicals of emerging concern (CECs) are suspected<br>to exhibit adverse health effects in humans. | yes | yes | no | [43]<br>Noelia Caballero-<br>Casero , Lidia<br>Belova, Philippe<br>Vervliet, Jean-<br>Philippe Antignac,<br>Argelia Castano~,<br>Laurent Debrauwer,<br>Marta Esteban<br>Lopez, Carolin<br>Huber,<br>Jana Klanova,<br>Martin Krauss,<br>Arjen Lommen,<br>Hans G.J. Mol<br>, Herbert Oberacher<br>,Olga Pardo<br>, Elliott J. Price<br>, Vera Reinstadler<br>, Chiara Maria<br>Vitale<br>,Alexander L.N.<br>van Nuijs Adrian<br>Covaci , |

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |    | Towards<br>harmonised criteria<br>in quality assurance<br>and quality control<br>of suspect and non-<br>target LC-HRMS<br>analytical<br>workflows for<br>screening of<br>emerging<br>contaminants in<br>human<br>biomonitoring<br>TrAC Trends in<br>Analytical<br>Chemistry<br>Volume 136, March<br>2021, 116201, 1-14<br>https://doi.org/10.1<br>016/j.trac.2021.116 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |    | 201                                                                                                                                                                                                                                                                                                                                                                   |
| 17 | Contaminants of emerging concern (CEC)<br>naturally occurring, manufactured or manmade<br>chemicals or materials which have now been<br>discovered or are suspected present in various<br>environmental compartments and whose toxicity or<br>persistence are likely to significantly alter the<br>metabolism of a living being.<br>(eg., pesticides, pharmaceuticals and personal care<br>products, fragrances, plasticizers, hormones, flame | yes | yes | no | [44]<br>Sébastien Sauvé &<br>Mélanie Desrosiers<br>Review: A review<br>of what is an<br>emerging<br>contaminant                                                                                                                                                                                                                                                       |

|    | retardants, nanoparticles, perfluoroalkyl compounds,<br>chlorinated paraffins, siloxanes, algal toxins, various<br>trace elements including rare earths and radionuclides,<br>manufactured nanoparticles and water treatment by-<br>products, etc.)<br>Such potential CEC should remain "emerging" as long<br>as there is a scarcity of information in the scientific<br>literature or there are poorly documented issues about<br>the associated potential problems they could cause. In<br>general, we expect CECs to be chemicals that show<br>some potential to pose risks to human health or the<br>environment and which are not yet subjected to<br>regulatory criteria or norms for the protection of<br>human health or the environment. Not all CECs will<br>actually prove to be evil and have some potential to<br>cause tangible concerns; the focus is that the lack of<br>pertinent environmental fate and ecotoxicological or<br>toxicological data prevent the proper evaluation of<br>associated risks. An already regulated presumed well-<br>known contaminant could certainly regain "emerging"<br>status as new scientific information becomes available<br>and thus force regulatory agencies to re-evaluate their |     |     |    | Chemistry Central<br>Journal 2014, 8:15<br>http://journal.chemi<br>strycentral.com/con<br>tent/8/1/15 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|-------------------------------------------------------------------------------------------------------|
|    | and thus force regulatory agencies to re-evaluate their<br>norms<br>and guidelines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |    |                                                                                                       |
| 18 | CECs<br>Quoted definition by Sauve 2014:<br>anthropogenic sources and recently, in addition to<br>traditional pollutants, the so-called "Contaminants of<br>Emerging Concerns (CECs)" are becoming central for<br>scientific research and legislation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | yes | yes | no | [45]<br>Monica Rigoletto,<br>Paola Calza, Elisa<br>Gaggero, Enzo<br>Laurenti *                        |

|    | Pharmaceutically active compounds, personal care<br>products, endocrine-disrupting chemicals and<br>pesticides are some of CECs that have been<br>increasingly detected in water. They are ubiquitous,<br>very persistent and not easy to remove by classic<br>wastewater treatment plants. CECs may accumulate in<br>the aquatic environment, but at present the lack of data<br>on their environmental fate and ecotoxicological<br>impact prevents a proper and complete evaluation of<br>the risks associated with<br>these organic compounds                                                                                                                                                                                                                                                                                                                                                                                                                 |     |     |    | Hybrid materials<br>for the removal of<br>emerging pollutants<br>in water:<br>classification,<br>synthesis, and<br>properties<br>Chemical<br>Engineering Journal<br>Advances<br>Volume 10, 15 May<br>2022, 100252, 1-16                                            |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19 | Emerging contaminant (EC):<br>New substances with no clear immediate effects<br>Emerging contaminants could be natural or synthetic<br>substances that are not commonly monitored in the<br>environment. At present, these substances are not<br>adequately considered in legislation, They can<br>encompass chemicals not previously included in<br>national or international monitoring programmes but<br>continuously introduced into the environment by<br>anthropogenic activities, and well-known contaminants<br>that have gained interest with the revelation of new<br>aspects of their occurrence, fate or effects . More than<br>700 emerging pollutants, their metabolites and<br>transformation products are listed as present in the<br>European aquatic environment (www.norman-netw<br>ork.net). The fact that emerging pollutants are present<br>in water bodies as complex mixture has to be<br>considered. The ubiquity and the high number of | yes | yes | NO | [46]<br>Lucrezia Lamastra,<br>Matteo Balderacchi,<br>Marco Trevisan<br>Inclusion of<br>emerging organic<br>contaminants in<br>groundwater<br>monitoring plans<br>MethodsX<br>Volume 3, 2016,<br>Pages 459-476<br>https://doi.org/10.1<br>016/j.mex.2016.05.<br>008 |

| potentially toxic compounds could lead to synergistic    |  |  |
|----------------------------------------------------------|--|--|
| effects                                                  |  |  |
| The identification of sources and pathways of            |  |  |
| contamination/pollution and the prediction of their      |  |  |
| impacts on groundwater quality are possible              |  |  |
| combining indicators and tracers. This is useful for the |  |  |
| development or the improvement of new conceptual         |  |  |
| models. Conceptual models intend to describe and         |  |  |
| optionally quantify systems, processes and their         |  |  |
| interactions and are developed to different incremental  |  |  |
| degrees of complexity.                                   |  |  |
| Emerging contaminants and pollutants include any         |  |  |
| compound for which a conceptual model is missing         |  |  |
| Eg Organic Wastewater Contaminants: (OWCs): can          |  |  |
| include pharmaceutical products, industrial              |  |  |
| compounds, pesticides and other emerging pollutants      |  |  |
| (personal care, life style and cosmetics products etc.). |  |  |
| In terms of chemical use and                             |  |  |
| emissions, pesticide use and agriculture sector are one  |  |  |
| of the main responsible of the diffuse pollution.        |  |  |
| Anyway the contamination profile is dominated by         |  |  |
| industrial compounds, followed by pesticides and         |  |  |
| pharmaceuticals. OWCs are primarily released into the    |  |  |
| environment by domestic households, industry,            |  |  |
| hospitals and agriculture (Fig. 1), while secondary      |  |  |
| contamination of soils and vegetation can occur          |  |  |
| through utilisation of biosolids, sludge and manure in   |  |  |
| agriculture. Other specific sources of OWCs in           |  |  |
| groundwater are sewer leaching and urban storm water     |  |  |
| recharge, both of which directly affect urban            |  |  |

| groundwater. Moreover, these contaminants are<br>present in the effluents from wastewater treatment<br>plants and can contaminate rivers and through-flow<br>lakes.<br>Emerging Pollutants are also characterised by:<br>consumer concerns about safety, the high number of<br>potentially monitored compounds, the high cost of<br>monitoring and the scarcity of data on the effects and<br>behaviour |   |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                         | 1 |  |  |

#### **References 28-46: for the Definition of a CEC: Table S6**

28 Cundy AB, Rowlands FM, Lu G, Wang W-X (2022) Review A systematic review of emerging contaminants in the Greater Bay Area (GBA), China: Current baselines, knowledge gaps, and research and management priorities. Environmental Science & Policy, Volume 131, Pages 196-208 https://doi.org/10.1016/j.envsci.2022.02.002

29 Churchill CJ, Baldys S, III, Gunn CL., Mobley CA., Quigley DP. (2020) United States Geological Survey (USGS (Churchill et al., 2020; Philip et al., 2018)

(2020). Compounds of emerging concern detected in water samples from potable water and wastewater treatment plants and detected in water and bed-sediment samples from sites on the Trinity River, Dallas, Texas, 2009–2013. U.S. Geological Survey Scientific Investigations Report 2019–5019, 1–57, https://doi.org/10.3133/sir20195019.

30 Philip JM, Aravind UK, Aravindakumar CT. (2018). Emerging contaminants in Indian environmental matrices – a review. Chemosphere 190, 307–326, https://doi.org/10.1016/J.

30 Oberga G, Leopold A (2019) Review article. On the role of review papers in the face of escalating publication rates – a case study of research on contaminants of emerging concern (CECs) Environment International 131 (2019) 104960: 1-16 https://doi.org/10.1016/j.envint.2019.104960

31 Sousa JCG, Ribeiro AR, Barbosa MO, Pereira MFR, Silva AMT (2018) A review on
environmental monitoring of water organic pollutants identified by EU guidelines, J. Hazard. Mater. 344 (2018) 146–162, doi:10.1016/j.jhazmat.2017.09.058.
32 Reberski JL, Terzi´c J, Maurice LD, Lapworth DJ (2022) Emerging organic contaminants in karst groundwater: A global level assessment, Journal of Hydrology 604 (2022) 127242
https://doi.org/10.1016/j.jhydrol.2021.127242

33 Schmidt TC (2018) Recent trends in water analysis triggering future monitoring of organic micropollutants, Analytical and Bioanalytical Chemistry (2018) 410:3933–3941 https://doi.org/10.1007/s00216-018-1015-9

34 Kumar R, Vuppaladadiyam AK, Antunes E, Whelan A, Fearon R, Sheehan M, Reeves L (2022) Emerging contaminants in biosolids: Presence, fate and analytical Techniques Emerging Contaminants 8 (2022) 162e194 https://doi.org/10.1016/j.emcon.2022.03.004

35 Ng KT, Rapp-Wright H, Egli M, Hartmann A, Steele JC, Sosa-Hernández JE, Melchor-Martínez EM, Jacobs M, White B, Regan F, Parra-Saldivar R, Couchman L, Haldend RU, Barrona LP (2020) High-throughput multi-residue quantification of contaminants of emerging concern in wastewaters enabled using direct injection liquid chromatography-tandem mass spectrometry, Journal of Hazardous Materials, Volume 398, 5 November 2020, 122933,1-14 https://doi.org/10.1016/j.jhazmat.2020.122933

36 D. Mooney, K.G. Richards, M. Danaher, J. Grant, L. Gill, P.-E. Mellander, C.E. Coxon, An investigation of anticoccidial veterinary drugs as emerging organic contaminants in groundwater Science of the Total Environment, 746 (2020) 141116, 1-16 https://doi.org/10.1016/j.scitotenv.2020.141116 37 Wang C, Chen H, Li H, Yu J, Wang X, Liu Y (2020) Review article Review of emerging contaminant tris(1,3-dichloro-2-propyl)phosphate: Environmental occurrence, exposure, and risks to organisms and human, Health Environment International Volume 143, October 2020, 105946, 1-16 https://doi.org/10.1016/j.envint.2020.105946

38 Qi C, Huang J, Wang B, Deng S, Wang Y, Yu G (2018) Contaminants of emerging concern in landfill leachate in China: A review Emerging Contaminants Volume 4, Issue 1, 2018, Pages 1-10 https://doi.org/10.1016/j.emcon.2018.06.001

39 Plaza-Hernandez M, Legler J, MacLeod M (2021) Integration of production and use information into an exposure-based screening approach to rank chemicals of emerging Arctic concern for potential to be planetary boundary threats. Emerging Contaminants Volume 7, 2021, 213-218 https://doi.org/10.1016/j.emcon.2021.10.001

40 Cvetnić M, Stankov MN, Kovačić M, Ukić S, Kušić TBH, Rasulev B, Dionysiou DD, Božić AL (2019) Key structural features promoting radical driven degradation of emerging contaminants in water Environment International Volume 124, March 2019, Pages 38-48

https://doi.org/10.1016/j.envint.2018.12.043

41 European Commission: Raquel N. Carvalho, Lidia Ceriani, Alessio Ippolito and Teresa Lettieri Directive 2008/105/EC, as amended by Directive 2013/39/EU, in the field of water policy: Development of the first Watch List under the Environmental Quality Standards Directive 2015 JCR, 2018. Technical Report: Development of the First Watch List under the Environmental Quality Standards Directive. https://ec.europa.eu/jrc/en/

publication/eur-scientific-and-technical-research-reports/development-first-watch-list-under-environmental-quality-standards-directive 42 Chengdu Qi, Jun Huang, Bin Wang, Shubo Deng, Yujue Wang, Gang Yu (2018) Contaminants of emerging concern in landfill leachate in China: A review Emerging Contaminants Volume 4, Issue 1, 2018, Pages 1-10 https://doi.org/10.1016/j.emcon.2018.06.001

43 Caballero-Casero N, Belova L, Vervliet P, Antignac J-P, Castano R~, Debrauwer L, Lopez ME, Huber C, Lanova J, Krauss M, Lommen A, Mol HGJ, Oberacher H, Pardo O, Price EJ, Reinstadler V, Vitale CM, van Nuijs ALN, Covaci A (2021) Towards harmonised criteria in quality assurance and quality control of suspect and non-target LC-HRMS analytical workflows

For screening of emerging contaminants in human biomonitoring, TrAC Trends in Analytical Chemistry Volume 136, March 2021, 116201, 1-14 https://doi.org/10.1016/j.trac.2021.116201

44 Sauvé S, Desrosiers M (2014) Review: A review of what is an emerging contaminant Chemistry Central Journal 2014, 8:15 http://journal.chemistrycentral.com/content/8/1/15

45 Rigoletto M, Calza P, Gaggero E, Laurenti E (2022) Hybrid materials for the removal of emerging pollutants in water: classification, synthesis, and properties Chemical Engineering Journal Advances Volume 10, 15 May 2022, 100252, 1-16

46 Lamastra L, Balderacchi M, Trevisan M Inclusion of emerging organic contaminants in groundwater monitoring plans MethodsX Volume 3, 2016, Pages 459-476 https://doi.org/10.1016/j.mex.2016.05.008

# Table S7: Summary of other reported descriptions/properties for/of CECs

| Environmental contaminants that are gaining attention, due to them being newly produced or because they can be identified and accurately quantified in environmental samples;<br>New substances with no clear immediate effects;<br>Well-known contaminants that have gained interest with the revelation of new aspects of their occurrence, fate or effects; |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Well-known contaminants that have gained interest with the revelation of new aspects of their occurrence, fate or effects;                                                                                                                                                                                                                                     |
| effects;                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                |
| Are biologically active;                                                                                                                                                                                                                                                                                                                                       |
| Can encompass chemicals not previously included in national or international monitoring programmes but which are continuously introduced into the environment by anthropogenic activities;                                                                                                                                                                     |
| Can enter the environment via a number of routes;                                                                                                                                                                                                                                                                                                              |
| Have the potential to undergo long range transport;                                                                                                                                                                                                                                                                                                            |
| Can be present in water bodies as complex mixture;                                                                                                                                                                                                                                                                                                             |
| Can cause secondary contamination: e.g., of soils and vegetation, or through the utilisation of biosolids, sludge and manure in agriculture;                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                |

| 10 | Not easy to remove by classic wastewater treatment;                                                                                                                                                                                       |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11 | Have long term stability;                                                                                                                                                                                                                 |
| 12 | Has potential to enter the environment;                                                                                                                                                                                                   |
| 13 | Is suspected of posing a significant risk to, or via, the aquatic environment, meaning there is reliable evidence of hazard and of a possible exposure to aquatic organisms and mammals                                                   |
| 14 | There is not enough information to assess the EU-wide exposure for the substance, i.e. insufficient monitoring data or data of insufficient quality, nor sufficient modelled exposure data to decide whether to prioritise the substance; |
| 15 | Toxicity or persistence are likely to significantly alter the metabolism of a living being;                                                                                                                                               |
| 16 | Residues of several ECs that have been observed to cause biological disruption/dysfunction, and generational effects, in exposed organisms via a number of mechanisms including endocrine dysfunction;                                    |
| 17 | Their properties, environmental behaviour and toxicological effects are still poorly understood;                                                                                                                                          |
| 18 | Limited occurrence data are available on them;                                                                                                                                                                                            |
| 19 | There is a scarcity of information in the scientific literature or there are poorly documented issues about the associated potential problems they could cause;                                                                           |
| 20 | Consumer concerns about their safety;                                                                                                                                                                                                     |
| 21 | The high number of potentially monitored compounds;                                                                                                                                                                                       |

| 22 | The high cost of monitoring them;                |
|----|--------------------------------------------------|
| 23 | The scarcity of data on the effects and behavior |

**Table S8** ISO requirements as per ISO ISO/IEC Directives Part 2 Principles and rules for the structure and drafting of ISO and IECdocuments:Clauses on subdivisions of the document only

https://www.iso.org/sites/directives/current/part2/index.xhtml

| Clause | Subdivisions of the document – "main title" | "Sub-clause"                             |
|--------|---------------------------------------------|------------------------------------------|
|        |                                             |                                          |
| 11     | Title                                       | 11.1 Purpose or rational                 |
|        |                                             | 11.2 Normative or formative              |
|        |                                             | 11.3 Mandatory, conditional or optional? |
|        |                                             | 11.4 Numbering and subdivision           |
|        |                                             | 11.5 Specific principles and rules       |
|        |                                             |                                          |
| 12     | Forward                                     | 12.1 Purpose or rational                 |
|        |                                             | 12.2 Normative or informative?           |
|        |                                             | 12.3 Mandatory, conditional or optional? |
|        |                                             | 12.4 Numbering and subdivision           |
|        |                                             | 12.5 Specific principles and rules       |
| 12     |                                             | 12.1 Durmage on retionals                |
| 13     | Introduction                                | 13.1 Purpose or rationale                |
|        |                                             | 13.2 Normative or informative?           |
|        |                                             | 13.3 Mandatory, conditional or optional? |
|        |                                             | 13.4 Numbering and subdivision           |
|        |                                             | 13.5 Specific principles and rules       |
| 14     | Scope                                       | 14.1 Purpose or rationale                |
|        |                                             | 14.2 Normative or informative?           |
|        |                                             | 14.3 Mandatory, conditional or optional? |
|        |                                             | 14.4 Numbering and subdivision           |

|     |                                  | 14.5 Specific principles and rules                        |
|-----|----------------------------------|-----------------------------------------------------------|
|     |                                  |                                                           |
| 15  | Normative references             | 15.1 Purpose or rationale                                 |
|     |                                  | 15.2 Normative or informative?                            |
|     |                                  | 15.3 Mandatory, conditional or optional?                  |
|     |                                  | 15.4 Numbering and subdivision                            |
|     |                                  | 15.5 Specific principles and rules                        |
| 4.6 |                                  |                                                           |
| 16  | Terms and definitions            | 16.1 Purpose or rationale                                 |
|     |                                  | 16.2 Normative or informative                             |
|     |                                  | 16.3 Mandatory, conditional or optional?                  |
|     |                                  | 16.4 Numbering and subdivision                            |
|     |                                  | 16.5 Specific principles and rules                        |
|     |                                  | 16.6 Overview of the main elements of a terminology entry |
|     |                                  | 16.7 Other elements of a terminology entry                |
| 17  | Symbols and abbreviated terms    | 17.1 Purpose or rationale                                 |
|     |                                  | 17.2 Normative or informative                             |
|     |                                  | 17.3 Mandatory, conditional or optional?                  |
|     |                                  | 17.4 Numbering and subdivision                            |
|     |                                  | 17.5 Specific principles and rules                        |
| 18  | Measurement and test methods     | 18.1 Purpose or rationale                                 |
|     |                                  | 18.2 Normative or informative                             |
|     |                                  | 18.3 mandatory, conditional or optional                   |
|     |                                  | 18.4 Numbering and subdivision                            |
|     |                                  | 18.5 Specific principles and rules                        |
| 19  | Marking, labelling and packaging | 19.1 Purpose or rationale                                 |

|    |              | 19.2 Normative or informative?           |
|----|--------------|------------------------------------------|
|    |              | 19.3 Mandatory, conditional or optional? |
|    |              | 19.4 Specific principles and rules       |
|    |              |                                          |
| 20 | Annexes      | 20.1 Purpose or rationale                |
|    |              | 20.2 Normative or informative            |
|    |              | 20.3 Mandatory, conditional or optional? |
|    |              | 20.4 Numbering and subdivision           |
|    |              | 20.5 Specific principles and rules       |
| 21 | Bibliography | 21.1 Purpose or rationale                |
|    |              | 21.2 Normative or informative?           |
|    |              | 21.3 Mandatory, conditional or optional? |
|    |              | 21.4 Numbering and subdivision           |
|    |              | 21.5 Specific principles and rules       |
|    |              |                                          |