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Abstract  

Wheat is a staple grain crop in the United States and around the world. Weed  

infestation, particularly grass weeds, poses significant challenges to wheat                     

production, competing for resources and reducing grain yield and quality.                  

Effective weed management practices, including early identification and targeted 

herbicide application are essential to avoid economic losses. Recent                              

advancements in unmanned aerial vehicles (UAVs) and artificial intelligence 

(AI), offer promising solutions for early weed detection and management,                   

improving efficiency and reducing negative environment impact. The integration 

of robotics and information technology has enabled the development of                         

automated weed detection systems, reducing the reliance on manual scouting and 

intervention. Various sensors in conjunction with proximal and remote sensing 

techniques have the capability to capture detailed information about crop and 

weed characteristics. Additionally, multi-spectral and hyperspectral sensors have 

proven highly effective in weed vs crop detection, enabling early intervention and 

precise weed management. The data from various sensors consecutively                       

processed with the help of machine learning and deep learning models (DL),             

notably Convolutional Neural Networks (CNNs) method have shown superior 

performance in handling large datasets, extracting intricate features, and                     

achieving high accuracy in weed classification at various growth stages in                   

numerous crops. However, the application of deep learning models in grass weed 

detection for wheat crops remains underexplored, presenting an opportunity for 

further research and innovation. In this review we underscore the potential of  

automated grass weed detection systems in enhancing weed management                    

practices in wheat cropping systems. Future research should focus on refining 

existing techniques, comparing ML and DL models for accuracy and efficiency, 

and integrating UAV-based mapping with AI algorithms for proactive weed                   

control strategies. By harnessing the power of AI and machine learning,                                

automated weed detection holds the key to sustainable and efficient weed                        

management in wheat cropping systems. 
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Introduction 

Wheat is a major crop in the United States contributing significantly to nations economy. In the year 

2022, United States planted approximately 45.8 million acres of wheat with a production value of 14.6 

billion dollars (USDA-NASS, 2023). Weeds present major limitations to wheat growers and are                   

barriers to progress in conservation tillage. Weeds compete with wheat crop for resources like sunlight, 

water, nutrients, and space diminishing yield, interfering harvest, and compromising grain quality. At 

times, growers may be docked at the elevator for excessive weed contamination in their grains. Weeds 

also may serve as hosts for insects and/or diseases injuring wheat crop and reducing yield. Potential 

yield loss due to weed infestation in winter wheat in the United States can reach upto 25.6% [1]. Grass 

weeds like Italian ryegrass (Lolium perenne spp. multiflorum), cheat grass (Bromus spp), jointed                    

goatgrass (Aegilops Cylindrica), and wild oat, (Avena fatua) are among the most troublesome wheat 

weeds as they share phenological similarity with the crop thus competing with them throughout the 

season [2]. These grass weeds cause millions of dollars in economic loss every year and limit yield and 

harvest efficiency [3]. Thus, developing and implementing appropriate weed management practices for 

grass weed control is critical for profitable wheat production in the US and worldwide.  

Most of the problematic grass weeds in wheat are winter annual weed species that emerge in the fall 

and remain relatively inconspicuous through the winter. However, as temperature starts rising in the 

spring, they become competitive and severely impacts wheat yield if not controlled early. Control of 

grass weeds at early/actively growing stage in early spring will maximize crop yield by reducing                 

competition. Unfortunately, because of morphological similarity of these weeds to wheat, many times 

growers are unaware of these weeds in their fields until they start to bloom in the spring. By this time, 

the weeds already have a competitive advantage with well-developed root system and tillers and most 

crop damage has already occurred. This difficulty in weed identification is further magnified by area of 

the field as larger the field, more difficult it is to scout for these grass weeds in a timely manner.   

Therefore, developing a precise weed identification tool that can differentiate weed vs crop in the early 

growth stages would help in timely intervention when the weeds are small and easier to control thus 

benefitting growers and the country’s economy at large. 

Identifying the grass weeds in their early growth stage and determining severity of infestations in wheat 

fields is the key in deciding the appropriate weed management program. For profitable and efficient 

weed control, growers must scout the entire field, identify any areas of severe weed infestations, and 

determine what weed management practices need to be implemented. Conventionally, herbicides have 

been used as the most effective way of weed control. Wheat fields containing uniform infestations of 

these problematic grass weeds should be considered for herbicide application program to avoid yield 

loss and harvest interference problems.  Likewise, fields that have fewer uniform infestations, but               

rather pockets of severe weeds should be managed to reduce weed seed bank and future infestations. In 

the case of patchy weed distribution, site specific weed management (SSWM) i.e. applying herbicides 

only where patches occur, should be considered for potential economic and environmental benefits. 

Traditional farm practices rely on manual scouting for visual weed identification and back-up advice 

from herbicide representatives or county agents for development of herbicide programs. The manual 

scouting programs are tedious, time-consuming and have limited accuracy because of the difficulty to 

differentiate wheat and grass weeds in early growth stages leading to inappropriate grass-weed control 

strategies. 

Inappropriate grass-weed control strategies are often related to: 

http://www.openaccesspub.org/
https://www.ers.usda.gov/topics/crops/wheat/


                           Vol 1 Issue 1  Pg. no.  21 

 

©2024 Swati Shrestha, et al. This is an open access article distributed under the terms of the  

Creative Commons Attribution License, which permits unrestricted use, distribution, and build 

upon your work non-commercially. 

Journal of Precision Agriculture 

International Journal of Sexually Transmitted Diseases 

a) Inaccurate application timing of the herbicides (weeds might already have well developed root                 

system and tillers to be effectively controlled by the herbicide when growers identify the weeds and 

act). 

b) Applying herbicides without considering the grass-weed threshold might have negative economic 

and environmental consequences. 

c) Broadcasting entire field even when weed-free areas are present, or weeds occur in patches. 

For developing an economic and environmental friendly grass control in wheat there is a requirement 

for a method of weed management that can gather and assess weed-related data within the field, while 

also taking appropriate measures to effectively control weed.  

Because of recent advances in sensor technology, unmanned aerial vehicles (UAV) platforms, and                

artificial intelligence (AI), automated weed detection can be developed as a promising tool for early 

grass weed detection and management in wheat. The use of UAVs, popularly known as drones, based 

remote sensing can facilitate rapid weed detection by providing high spatial as well as temporal                      

resolution and rapid data acquisition. UAVs or drones are preferred over satellite and manned aerial 

platforms for image acquisition/remote sensing due to their cost effectiveness, flexibility in data                    

acquisition, ability to conduct low altitude operations, immunity to cloud covers, and ease of operation 

[4]. Optical sensors are the most preferred technology for data acquisition in UAV based automated 

weed detection systems [5]. The UAVs equipped with multispectral and hyperspectral sensors help in 

capturing spectral information of the crops in multiple wavelengths. Different vegetation indices can be 

used to distinguish weeds from crops using their unique spectral signatures. Thus, using UAV imagery 

and machine learning algorithms, it is possible to create UAV generated weed maps and prescription 

maps to implement variable rate herbicide application [6]. In addition to the UAVs, hand-held sensors 

can also be used for image acquisition, but the process is more time-consuming and not possible to use 

for large acres. However, hand-held sensors can be used when images of high resolution are required 

for the model development process. 

Automated weed detection can mitigate inappropriate grass-weed control strategies by: 

a) Precise identification of weed threshold and weedy areas in the fields.  

b) Allowing growers to act in a timely and targeted manner.  

In recent years, stakeholders have shown enhanced interest in automated grass weed detection and   

management techniques in wheat. However, existing literature lacks systematic compilation of current 

studies on automated grass weed detection specifically tailored for wheat crops. In response to this 

knowledge gap, the paper is a systematic review of the current techniques on automated weed detection 

system. The paper will also discuss various image acquisition and machine learning techniques                    

currently available and prospects of automated grass weed detection in wheat with the evolution of  

artificial intelligence and machine learning. 

Automated weed detection 

Automated weed detection is an area of growing significance because of pressing needs to enhance  

efficiency, reduce labor cost, and minimize negative impacts of herbicides in agricultural production 

system. The integration of robotics and information technology in agriculture has made automated weed 

detection possible, minimizing the need for manual scouting or intervention. Use of sensors in                        

conjunction with proximal as well as remote sensing tools help in capturing information about crops 

growing in a field at a rapid rate with minimal disturbance to the crops. As plants can be distinguished 

http://www.openaccesspub.org/
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from each other based on their optical, mechanical, thermal, or spectral properties, the sensors that can 

detect or sense such differences are used in automated weed detection systems [7]. Several types of  

sensors, including Light Detection and Ranging (LiDAR), thermal infrared, multispectral,                             

hyperspectral, RGB cameras, can be used for automated weed detection depending on specific                   

requirement [8].  The data collected by such sensors is further analyzed using several mathematical or 

probabilistic models like Machine Learning (ML) and Deep Learning (DL) models for automated weed 

detection that is aimed at saving time and labor costs, enhancing sustainability, and promoting precision 

farming practices [9]. The information collected by automated weed detection systems can be used as 

input in autonomous spraying systems that are designed for site-specific herbicide applications [10]. 

The use of sensor technologies, Internet of Things (IoT), and robotics has significantly improved the 

efficiency of weed detection and minimized the cost by allowing site-specific herbicide application 

(Emmi et al., 2014). Using such autonomous systems can also help in continuously monitoring crops, 

allow timely intervention, and prevent yield loss. Automation in weed detection also minimizes human 

intervention and avoids health hazards that can occur due to exposure to herbicides during application 

[11].  

Modern weed detection systems like WEED-IT® and WeedSeeker® are widely used in site-specific 

herbicide applications using reflectance information in red and infrared bands with a high level of                 

accuracy. These site-specific herbicide application systems use optical sensors that can trigger                       

individual nozzles based on the detection of weeds, applying herbicide only to the weeds. They can be 

installed in existing spraying equipment and have integrated GPS that enable precise mapping of fields 

and recording areas of weed infestation. WEED-IT® and WeedSeeker® were used for site-specific or 

spot herbicide application in the dryland wheat growing regions to eliminate weeds such as Russian 

thistle (Salsola tragus L.) and Kochia (Bassia scoparia L.). It was observed that the use of such systems 

reduced the herbicide volume required in the field by 53% compared to traditional uniform application 

[12]. However, the use of WeedSeeker® and other similar technologies is not limited to the grain crop 

Figure 1. Intuitive Diagram of automated weed detection and site-specific herbicide 

Application 

http://www.openaccesspub.org/
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fields. WeedSeeker® technology was also used for the detection and spot treatment of weed in                    

sugarcane and peanut respectively and resulted in the herbicide reduction of 18% to 54% throughout the 

season [13][14]. 

Completely autonomous or robotic systems for weed detection and control consist of three major              

components; a sensor unit consisting of sensors for weed detection, a control unit for data processing 

and decision making, and an actuator controlled mechanical spraying unit for site specific weed control 

(Figure 1) [15].  

Sensors for automated weed detection 

Sensors are defined as devices that can sensitively and selectively detect changes in the environment 

within their proximity and produce output signals that can be used by different computing systems [16]. 

Sensors can be of several types and have different modes of operation. They can produce several types 

of signals that are used as an input into a processing unit or signal processor. Sensors can be classified 

into distinct groups based on different criteria to differentiate them. Based on the type of signals they 

produce; sensors can be categorized as analog and digital sensors. Analog sensors generate a continuous 

stream of output or analog signal, whereas digital sensors produce output in digital or discrete form 

[17]. Similarly, based on the way they interact with the environment, they are further classified as active 

and passive sensors. Active sensors emit energy as a signal into the environment and detect the response 

from the target. Some examples of active sensors include RADAR, LiDAR, active infrared sensors, and 

ultrasonic sensors. Alternatively, passive sensors rely on external sources of energy that include                   

sunlight, heat, sound waves, and electromagnetic radiation. Passive sensors include passive infrared 

sensors, optical sensors, and passive sonar sensors.  

Sensors and sensing techniques used in automated grass weed detection 

Precision agriculture heavily relies on the use of sensors and actuators to obtain information about              

different aspects of agriculture with high levels of accuracy. Sensors provide information about crop 

health, nutrient, and moisture levels in soil, and other climatic or environmental conditions that enable 

farmers and agronomists to take timely and targeted actions to optimize yields and minimize resource 

usage. Some of the most important aspects of crop growth in agriculture that can impact yield and                   

profitability are soil, water, climate, weeds, pests, and diseases. These aspects of crop growth can be 

monitored and managed using various types of sensors. For example, soil moisture and pH sensors can 

be employed to measure moisture content and pH of the soil. Measuring soil moisture levels helps in 

employing variable rate irrigation (VRI) and reduce water usage for irrigation. A study conducted in 

2020 found that a soil sensor-based irrigation scheduling technique was more effective compared to soil 

water balance (SWB) method and utilized 27 – 45% less water [18]. In a similar manner, sensors such 

as humidity sensors, temperature sensors, pressure sensors, and solar radiation sensors are used in                

climate monitoring purposes.  

Proximal and Remote Sensing  

Specific sensors can be used or designed in agriculture according to the needs of growers to ensure the 

efficiency and effectiveness of sensing tasks. In agriculture, proximal sensing and remote sensing are 

the two types of sensing techniques that are primarily used. In proximal sensing, the sensor is near the 

target of interest. This type of sensing technique is widely used in precision agriculture and the sensors 

are mostly mounted on vehicles or are hand-held. GreenSeeker® (Trimble Inc.) is one of the most              

popular hand-held optical sensors developed by researchers of Oklahoma State University which helps 

in the measurement of Normalized Difference Vegetation Index (NDVI) using red (660 nm) and near 

http://www.openaccesspub.org/
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infrared (NIR) radiation in the electromagnetic spectrum to aid in variable rate nitrogen application in 

crops [19]. For automated weed detection, proximal sensing technique can be used by mounting                   

cameras or other sensors on tractors or handheld devices. As most of the sensors used for automated 

weed detection are optical imaging sensors, this type of sensing technique is used if finer or higher              

spatial resolution is required [20].  

Alternatively, remote sensing is another sensing technique in which the sensor is either mounted on a 

satellite, aircraft, or drones (UAVs). This technique enables the acquisition of data from a large                   

geographical area in a short duration and is widely adopted in precision agriculture in areas such as crop 

growth monitoring, soil moisture estimation, and pest and disease detection [21], [22], [23].  However, 

the data collected by optical remote sensors are usually lower resolution compared to the data collected 

by proximal sensors [24].  

Using satellite based remote sensing for weed detection is impractical for weed patch detection and 

mapping on a field scale whereas UAV based remote sensing has been found to be effective for                   

automated weed detection as it offers better spatial, and temporal resolution compared to satellite [25]. 

Sensors used in remote sensing for weed detection are usually passive sensors as they do not emit                

energy and rely on sun as the source of illumination [26]. Remote sensing in precision agriculture began 

with using wavelengths in the visible and near infrared (NIR) ranges only and has gradually broadened 

to include almost all the wavelengths of radiation in the electromagnetic spectrum [27]. With this, it has 

been possible to identify and differentiate spectral signatures of weeds from crops thus enabling early 

detection and elimination of weeds in agricultural fields.  

Multispectral and Hyperspectral Sensors 

Multispectral and Hyperspectral sensors are unique types of optical sensors that can detect or capture 

electromagnetic radiation reflected or emitted by different objects under consideration in different bands 

of wavelengths. In precision agriculture, these sensors are usually mounted on remote sensing platforms 

such as satellites, aircraft, and drones and they capture information about the spectral reflectance of crop 

canopies and other objects in the region of interest. Multispectral sensors can capture data in only a few 

discrete bands (usually 3 to 10) whereas hyperspectral sensors can capture hundreds of contiguous 

bands with narrower spectral intervals. There are several multispectral sensors available in the market 

that include MicaSense RedEdge series, Parrot Sequoia, ACSL SOTEN, Sentera Quad, and MiniMCA6. 

Similarly, there are several hyperspectral sensors offered by companies that include Headwall                       

Photonics, Specim, Telops, BaySpec, and others.  

Use of hyperspectral and multispectral sensors are found to be highly effective in automated weed              

detection and timely weed management in a wide variety of crops. An automated weed detection and 

evaluation system was developed in a study conducted in 2005 using machine vision and hyperspectral 

imaging system to accurately detect weeds in cotton fields with an average false alarm rate of 15%. The 

hyperspectral images were acquired in wavelengths ranging from 500 to 1000 nm. The hyperspectral 

data-cube consisted of 100 individual wavelengths captured in steps of 5nm [28]. An automated weed 

detection and crop monitoring system was proposed in a study conducted in 2019 that used several  

vegetative indices and object-based image analysis on multispectral images to capture weed patches in 

wheat fields [29]. An RBG sensor and a Tetracam NIR sensor were used for data acquisition in that 

experiment. In another study in 2012, an automated weed control system with hyperspectral imaging 

was used to selectively apply hot food-grade oil for weed control in early growth tomatoes. The system 

used a multispectral Bayesian classifier to discriminate plant canopy from weed and successfully                 

http://www.openaccesspub.org/
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controlled 95.8% of Black nightshade (S. Nigrum) and 93.8% of redroot pigweed (A. Retroflexus) after 

15 days of thermal treatment [30]. Similarly, Barrero and Perdomo (2018) used UAV based                          

multispectral imaging to detect Gramineae weed in rice fields in Colombia using multispectral                     

Micasense Rededge camera and RGB Canon Powershot D20 with impressive detection results [31]. 

These results from multiple studies have proven multispectral and hyperspectral imaging as highly             

effective tools for precision agriculture including automated weed detection.  

Computer Vision and artificial intelligence in automated weed detection 

Currently, various tasks in smart agriculture, such as identifying plant pests and diseases, predicting 

crop yields, and managing nutrient and water requirement, rely on computer vision technology for               

successful implementation [32]. Computer vision is a field of artificial intelligence that employs                  

machine learning and neural networks to train computer systems on extracting valuable information 

from digital images, videos, and other visual data inputs. Computer vision works like human vision  

except that instead of retina and visual cortex a wide array of data and algorithms are used in the                 

process. Two essential technologies that are used to accomplish computer vision include traditional        

machine learning (ML) and deep learning (DL). 

With the advancement of computer technology, and increased computational capacity, it is now possible 

to process large volumes of data collected from the sensors efficiently using complex Machine Learning 

(ML) and Deep Learning (DL) algorithms for automated weed detection with high levels of accuracy 

and reliability. As image sensors are predominantly used in UAV based automated weed detection, 

computer vision techniques can be effectively used to process the high-resolution image data captured 

by such sensors. The upcoming section of the paper will discuss various types of ML and DL                      

techniques and how they can be utilized in automated weed detection. 

Machine Learning 

Machine Learning (ML) is one of the major branches of Artificial Intelligence (AI) that uses algorithms 

and models based on statistical techniques to make predictions from the input features of dataset                 

without being explicitly programmed. The concept of ML was proposed a long time ago and there were 

Figure 2. Four major types of machine learning techniques. 

http://www.openaccesspub.org/
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several research that laid the foundation for ML. One of the major contributions in this field was the 

study by Arthur Samuel (1959), where the focus was to develop programs that could learn to play the 

game of checkers through reinforcement learning [33]. This study was also a foundation for research on 

reinforcement learning and pattern recognition. A ML model is a statistical model based on linear                

algebra and probability theory that can find patterns on the data that was previously unseen and make 

informed decisions based on that data [34]. Hence, ML is a process of solving a problem by collecting 

the relevant data and building a statistical model to solve the problem using the collected dataset. There 

are different types of ML based on the raw data and statistical model used for predictions that are                 

discussed below (Figure 2). 

Types of Machine Learning 

1. Supervised learning 

Supervised learning is a process of using the dataset that consists of labeled examples in which all the 

feature vectors have a corresponding label or target variable. In the learning process, the algorithm 

learns to map input features to the corresponding target variable with a goal to predict accurate output 

for the unseen input data or features [35]. Some of the most popular supervised learning algorithms  

include Linear Regression, Support Vector Machine (SVM), Random Forest, K- Nearest Neighbors 

(KNN), and Neural Networks. Supervised learning is primarily used for two types of problems,                      

classification, and regression. Most of the tasks associated with object detection and classification are 

performed using supervised learning algorithms.  

2. Unsupervised Learning  

Unsupervised learning involves analyzing unlabeled data to find the underlying patterns in the dataset, 

which can assist in tasks like clustering or association. There is no explicit guidance or information to 

the model to find the patterns in the dataset. This approach is useful when there is uncertainty about the 

inherent properties of the dataset. The most popular unsupervised learning techniques include                      

clustering, dimensionality reduction, and association rules. Clustering involves grouping similar data 

points together based on their similarity in features. Popular algorithms for clustering include                        

hierarchical, k-means, and gaussian mixture models. In dimensionality reduction, the algorithm focuses 

on representing the data into a lower dimensional space without compromising the characteristics of the 

data. These algorithms are widely used in image recognition, natural language processing, and anomaly 

detection [36]. 

3. Semi-supervised Learning 

This ML approach uses the features of both supervised and unsupervised learning techniques by using 

both labeled and unlabeled dataset during model training. This technique is highly beneficial in                   

conditions where there are not enough labeled datasets available for training. Usually, the unlabeled 

examples are higher in quantity compared to the labeled examples. The unlabeled dataset is used to  

refine the model by improving its understanding of the hidden patterns in the data [37]. Some of the 

examples of semi-supervised learning involve co-training, self-training, and multi-view learning. This 

learning technique is utilized in different domains that include computer vision and natural language 

processing [38]. 

4. Reinforcement Learning 

In this domain of ML, the learning is based on simulation of an environment where the machine can 

learn to achieve an optimal result perceiving the state of that environment and learning by trial and               

http://www.openaccesspub.org/
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error. This approach is based on reward and punishment, and the machine can execute actions in every 

state. The best course of action is selected by achieving the maximum cumulative rewards from each 

state. Reinforcement learning is used in situations involving sequential decision-making with long-term 

objectives, such as game playing, robotics, resource management, and logistics [39].  

Traditional Machine Learning (TML) for Automated Weed Detection 

Automated weed detection using TML involves using ML algorithms along with a series of image               

processing techniques. Image processing techniques that involve segmentation, edge detection, texture 

analysis, shape analysis, and principal component analysis (PCA) are used to extract features from the 

dataset and use them to train the ML model. Some of the major criteria for distinguishing weeds from 

crops are features that include color, shape, texture, height, and distribution in the field. All these                

features can be detected using vision-based or optical sensors and computer vision techniques including 

traditional machine learning. These criteria also serve a critical role in feature engineering for TML 

tasks, where algorithms like support vector machines (SVM), random forests, or neural networks can 

leverage these features to classify weeds from plants. TML algorithms have been implemented to detect 

weeds in a wide range of crops with high levels of effectiveness and reliability. A study by Islam et al. 

(2021) have used algorithms like random forest, SVM, and KNN and compared their effectiveness for 

detecting weeds in a chili field in Australia, where SVM and RF performed well with an accuracy of 

more than 90% [40]. Similarly, a real time weed detection system was designed in a 2020 study using 

random forest for classification task [41]. The system was proven to be effective for automated weed 

detection and variable rate application of herbicides. In another study, SVM was used to identify six 

types of weeds in a data set that consisted of 224 relevant images. Through optimization of feature                 

extraction methods, the system achieved an impressive accuracy of about 97% [42]. Similarly, a study 

conducted in 2006 used SVM for weed detection in maize and achieved an accuracy of up to 83 % [43]. 

Random forest classifier was used in a 2023 study for early season Blackgrass weed detection in wheat 

using ground-based imagery as well as UAV-based aerial imagery and an accuracy of 88% and 72% 

was achieved respectively [44]. Su et al. (2022) also detected blackgrass weed in wheat fields with 93% 

accuracy using UAV based multispectral imagery along with random forest classification algorithm 

[45]. In a similar study, several types of grass weeds in wheat fields were detected using AdaBoost              

algorithm, that is an ensemble of multiple classification algorithms [46]. Although TML algorithms 

have been widely used in the field of automated weed detection, their limitations including dependence 

on feature engineering, poor generalization, and lack of scalability hinder their effectiveness in this  

domain. Using TML for large and high-resolution datasets such as multispectral and hyperspectral               

images can be computationally intensive and inefficient [47]. With the advancement in computing  

power and reduced cost of computer hardware’s, deep learning (DL) algorithms have been gaining  

popularity in the field of precision agriculture and crop vs weed detection wherein feature extraction 

and classification processes are merged [48]. These DL algorithms can extract multidimensional                  

semantic feature information of crops and weeds because of their enhanced data exploration capabilities 

thus overcoming the disadvantages of traditional machine learning techniques (Figure 3) [49]. The             

upcoming section discusses DL techniques and their usage in automated weed detection in detail. 

Deep Learning 

DL is a subset of ML that focuses on algorithms that mimic the brain’s neural networks. It utilizes                 

multiple layers of artificial neurons, typically arranged in neural networks, to model and learn from 

complex data. These neural networks are designed to mimic the functioning of biological neurons,             

http://www.openaccesspub.org/
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allowing them to learn and recognize patterns in data at multiple levels of abstraction [50]. This                    

hierarchical learning process enables deep learning models to automatically extract features from raw 

data and enable end-to-end learning, making them effective for a wide range of tasks including image 

recognition and natural language processing. DL involves training multiple layers of Artificial Neural 

Networks (ANNs), which is why it is referred to as “deep” learning. A neuron or node is the smallest 

unit of ANN that can take an input and perform computation (a weighted sum of input followed by an 

activation function) and produce an output. Frank Rosenblat (1958) proposed the simplest form of a 

neural network unit that could take multiple binary inputs, perform computations, and apply a step               

function to produce a binary output [51]. The term “perceptron” was used to define such artificial                 

neurons and they were primarily used for linearly separable binary classification tasks (Figure 4). This 

was one of the earliest neural network architectures that influenced further research in the field of DL.  

Figure 3. Comparison of traditional machine learning (ML) and advanced deep learning 

(DL) pipeline for automated weed detection in agriculture. With the advancement in artificial 

intelligence and computing technologies, DL techniques can facilitate accurate and efficient 

weed vs crop distinction in agricultural fields.  

Figure 4. Perceptron: one of the simplest neural network architectures  
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 At present, Convolutional Neural Network (CNN), which was used for the first time by LeCun for 

Handwritten Zip Code Recognition, is one of the most popular deep learning algorithms for computer 

vision applications [52]. Deep Learning algorithms are used for a wide variety of tasks ranging from 

facial recognition, microbial detection, driving assistance systems, medical image analysis,                            

environmental monitoring, agriculture, and so on [53], [54], [55], [56]. Some of the most popular CNN 

based DL architectures are LeNet, AlexNet, ZFNet, GoogleNet, VGGNet, ResNet, etc. Other popular 

DL algorithms that can be implemented for computer vision tasks are Recurrent Neural Networks 

(RNNs), Vision Transformers (ViTs), and U-Net. 

Convolutional Neural Networks (CNN) 

CNN is a type of feed forward neural network architecture that has been proven to be formidable tool 

for image analysis because of its effectiveness in image recognition and processing. The main feature of 

CNN architecture is the convolutional layer that performs convolution operation to the input data 

(Figure 5). This architecture is influenced by the perception through visual cortex [57]. A typical CNN 

architecture should consist of convolutional layers where the convolution operations to the input data is 

performed, activation functions that introduce non-linearity to the network, pooling layers that are used 

to down sample the feature maps created by the convolutional layers, and fully connected layers that 

flatten the output from the previous layer to perform either classification or regression tasks.  

One of the major differences in the architecture of CNNs compared to other neural network                          

architectures is the presence of neurons that are organized into three dimensions, height, width, and 

depth. Additionally, the neurons in CNN are also not fully connected with each other from one layer to 

the other which reduces the number of parameters in the network and allows the network to handle large 

input data such as high-resolution images [58]. There are several deep learning architectures based on 

CNN used today that have performed exceptionally well in the popular benchmarking datasets such as 

ImageNet. One such CNN architecture was proposed for image classification using the ImageNet               

dataset and achieved a top-5 error of 18.9% on the test data which was a groundbreaking achievement 

in image classification at that time [59].  

Figure 5. An example of Convolutional Neural Network Architecture (LeNet 5) 
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Deep Learning for Automated Weed Detection  

With the improvements in hardware resources and continuous refinement of deep learning techniques, a 

widespread use of DL techniques has been observed across various domains. Automated weed detection 

is one such field that has also benefited from the use of DL techniques, particularly CNNs, as they have 

demonstrated remarkable accuracy in weed detection and classification. The challenge of extraction and 

selection of features in traditional ML has been addressed by DL methods that can learn features from 

the dataset on their own. DL methods have also been found to be effective in handling higher                          

dimensional multispectral and hyperspectral imagery that provide rich and detailed information about 

the objects. For instance, a 2018 study evaluated multiple research papers that used DL techniques in 

agriculture, found that DL methods are more efficient compared to TML in most of the agricultural  

image processing scenarios [60]. As the volume of data available has significantly grown with the use 

of hyperspectral and multispectral imaging in agriculture, the TML methods have reached saturation 

and DL methods have emerged as superior performers that can train efficiently on large datasets for 

weed detection. Consequently, DL methods are being used to detect different kinds of weeds in a wide 

variety of crops. In a study, CNN was used with unsupervised data labeling on UAV captured imagery 

to detect weeds in row crops and achieved accuracy difference of 1.5% in spinach field and 6% in the 

bean field [61]. Similarly, Etienne et al (2021) used YOLOv3, a CNN based DL model with UAS                

imagery to detect monocot and dicot weeds and achieved an average precision of 91.48% and 86.13% 

respectively [62]. A survey by Hasan et al. (2021) searched and enumerated the number of research 

papers in the field of automated weed detection using DL from 2010 to 2020 using relevant keywords 

across multiple academic research databases [63]. They found about 1650 relevant papers that included 

the keywords used for the search. Hence, there is a substantial amount of research in the field of                   

automated weed detection using DL methods. 

Current status of automated grass weed detection in wheat cropping system 

Even though, use of computer vision and artificial intelligence has been gaining popularity in the field 

of precision agriculture and automated weed detection, majority of ML and DL architecture for crop vs 

weed distinction have been tested in vegetable crops like tomato, radish, carrot, lettuce, sugar beets and 

onions to name a few [63], [64]. There have been comparatively fewer studies on implementation of 

artificial intelligence methods specifically for grass weed detection in wheat crops [63]. Table 1                    

Summarizes all the studies that have been conducted in the past decade for automated grass weed                 

detection in wheat cropping system using machine learning and deep learning techniques.  

The search for articles was performed via keywords: “automated, grass weed, pests, detection,                        

machine-learning, deep-learning and automated”, carried out directly in google scholar, Elsvier,                    

Publons and Taylor & Francis. 

These studies suggest that there is a great scope of using artificial intelligence in automated grass weed 

detection in the future, but researchers should focus on enhancing the efficiency and accuracy of the 

current grass-weed detection techniques, Current literature lacks comparison of various machine                 

learning and deep learning techniques in terms of their accuracy and memory efficiency. Investigating 

on wide range of computer vision techniques that are available currently and deploying the best model 

that has acceptable accuracy and efficiency specifically in terms of memory usage would be a valuable 

resource for wheat growers and researchers. The ability to identify grass weed in initial stages could 

help growers take pro-active measures for weed control minimizing yield and resource loss. The use of 

UAVs with appropriate sensors can be used for creating accurate maps of weeds with DL and ML                 
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Table 1. List of all the studies conducted worldwide in the past two decades on automated grass weed detection in wheat cropping              

system. 

S.N. 

  

Study Title 

  

Sensor 
Platform 

Image pro-
cessing Tech-
nique 

  

Model Used 

Model 
Type 

(TML/
DL) 

Weeds used 
in the study 

References 

1 

On-farm evaluation of UAV-
based aerial imagery for season-
long weed monitoring under 
contrasting management and 
pedoclimatic conditions in 
wheat. 

  

  

UAV 
based 

Segmentation 

and Classifi-
cation 

Watershed 
Segmenta-

tion and 
Random 

Forest Clas-
sifier 

TML Ryegrass 

Anderegg et al., 

2023 

(Switzerland) 

[44] 

2 

Detection of Italian Ryegrass in 
Wheat and Prediction of Com-
petitive Interactions Using Re-
mote-Sensing and Machine-
Learning Techniques. 

  

UAV 

based 
Classification 

Custom 

(Multilayer 

Perceptron 
(MLP)) 

DL Ryegrass 

Sapkota et al., 2020) 

(United States) 

[65] 

3. 

Real time detection of inter-row 
ryegrass in wheat farms using 
deep learning. 

  

  

Ground-

Based 
Segmentation 

(Encoder-
decoder) 

Based on 
EFRNet 

DL Ryegrass 

Su et al., 2021 

(Australia) 

[66] 

4. 

Multi-Modal Deep Learning for 
Weeds Detection in Wheat Field 
Based on RGB-D Images. 

  

  

Ground 
Based 

Detection CNN DL 

Meadow 
foxtail, An-
nual Blue-
grass, Japa-
nese Chess, 
Cockspur 
grass 

Xu et al., 2021 

(China) 

[67] 

5. 

Spectral analysis and mapping 
of blackgrass weed by leverag-
ing machine learning and UAV 
multispectral imagery. 

  

  

UAV 

Based 
Classification 

Random 
Forest Clas-
sifier 

TML Blackgrass 

Su et al., 2022 

(United Kingdom) 

[45] 

6. 

Automating Agriculture: Using 
UAS and machine learning to 
monitor weed populations. 

  

  

UAV 
Based 

Classification CNN DL 

Blackgrass 

  

  

Lambert, 2018 

(United Kingdom) 

[68] 

7. 

Testing the ability of unmanned 
aerial systems and machine 
learning to map weeds at sub-
field scales: a test with the weed 
Alopecurus myosuroides (Huds). 

  

  

UAV 
Based 

Classification CNN DL Blackgrass 

Lambert et al., 2019 

(United Kingdom) 

[69] 

8. 

WeedsNet: a dual attention net-
work with RGB-D image for 
weed detection in natural wheat 
field. 

  

  

Ground 
Based 

Detection 
WeedsNet 
(Custom 
CNN) 

DL 

Blackgrass, 
Japanese 
brome, Ken-
tucky blue-
grass 

Xu et al, 2023 

(china) 

[70] 
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algorithms. These UAV’s can not only be used for understanding the spatial distribution of weed but 

can for spot spraying. Combining these two techniques of automated grass-weed detection and                        

site-specific management can revolutionize management of grass weeds in wheat cropping system in 

the future.  

 

Conclusion 

Accurate detection of grass weed at early growth stage of wheat and their management is critical for 

profitable wheat production. However, accurate identification of grassweeds at early growth stage is 

difficult for growers because of the morphological similarity of grass weeds to wheat. By the time 

growers identify the weeds, they have developed strong tillers, are difficult to control and already                

impacted the crop yield negatively. In today’s era where artificial intelligence and computer vision are 

widely used in the fields of precision agriculture, it is possible to use various computer algorithms to 

distinguish crops vs weeds and take pro-active measures to control them before they impact crop 

productivity. The paper discusses current research on automated grass weed detection systems in wheat 

and the future scope of using artificial intelligence for weed management. 
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