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Abstract 

Methionine (Met) is a nutritionally essential amino acid and has been widely demonstrated to improve cellular 

oxidative balance and mediate oxidative stress. Met targets reactive oxygen species (ROS) directly by being 

oxidized to Met sulfoxide (MetO) [1]. Met can be metabolized to cysteine (Cys) through transsulfuration 

pathway, which is further metabolized to glutathione (GSH), taurine, and hydrogen sulfide (H2S). All these 

metabolites exhibit antioxidant functions in various models (reviewed at [2]). More recently, Met also has been 

demonstrated to enhance cellular oxidative tolerance via pentose phosphate pathway (PPP) [3], which 

contributes to the balance of cellular reducing power and accelerates the reduction reaction of MetO and GSH 

oxidative product GSSH back to Met and GSH. 
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Met Oxidation (Met sulfoxide) 

 Met, as a free amino acid or bound to a protein, 

is readily metabolized and interacts with various ROS, 

such as hydrogen peroxide (H2O2), hydroxyl radicals, 

hypochlorite, chloramines, and peroxynitrite [4]. These 

oxidants oxidize Met residues into a mixture of the R- 

and S-isomers of MetO [5]. Metabolome analysis reveals 

that dietary excess Met increases accumulation of Met 

oxidation products, such as MetO and Ac-Met sulfoxide 

(a MetO metabolite) [6]. Previous report suggests that 

Met oxidation mainly protects critical residues at the 

active site against oxidative modification of proteins [1]. 

For example, glutamine synthetase contains 16 Met 

residues, 8 surface exposed Met residues are oxidized 

with little effect on catalytic activity of the enzyme after 

exposure to H2O2, while the other intact residues are 

generally buried within the core of the protein and guard 

the entrance to the active site [7]. However, the recent 

experimental models suggested that Met oxidation 

involves in activation or inactivation of protein function 

and is now established as a novel mode of redox-

regulation of protein function similar with thiol-based 

redox-regulation of protein function [8]. For example, 

calcium/calmodulin (Ca2+/CaM)-dependent protein 

kinase II is a prototypical methionine redox sensor and 

oxidation of paired regulatory domain Met residues 

enhances its activity by pro-oxidant conditions [1, 9], 

while oxidative stress-induced Met residues oxidation 

leads to the accumulation of chemically and functionally 

altered alpha-synuclein with reducing its affinity for 

biological membranes and impairing degradation the by 

20S proteasome [10].  

 Met oxidation can be reversed by NADPH-

dependent MetO reductases (Msr), which have been 

identified in all organisms from bacteria to mammals 

[11]. Currently, three classes of Msr are discovered: 

MsrA and MsrB which are stereo-dependent when 

binding to the Met sulfoxide in the oxidized protein; and 

fRMsr which mainly reduces selectively free L-Met-R-O 

[12]. It is now well established that the chemical 

mechanism of the reductase step passes through 

formation of a sulfenic acid intermediate [12]. The Msr 

system provides a more efficient mechanism to 

scavenge ROS as the reduced Met residues in proteins 

allows them to react again with ROS. Msr family has 

been widely shown to repair proteins with oxidative 

damages and protect cells against oxidative damage 

[13]. Upregulation or activation of Msr lowers ROS 

generation and increase oxidative stress resistance in 

different models [14], suggesting a potential approach 

to treat oxidative injury related diseases. Conversely, 

knocking out or inhibition of Msr enhances cell 

susceptibility to oxidative stress [15]. Thus, the cyclic 

interconversion of Met and MetO residues of proteins 

may serve as a key pathway against oxidative stress 

[16].  

Met Metabolism/Cys-GSH 

 Met is mainly metabolized in liver as some Met 

metabolic enzymes are liver-specific, such as Met 

adenosyltransferase (MAT I, II, and III) [17]. Firstly, 

MAT catalyzes Met into S-adenosylmethionine (SAM), 

which is a methyl donor for DNA and protein 

modification [18]. DNA methyltransferases (DNMTs) 

contributes to catalyzing the methylation reactions and 

transfers a methyl group from SAM to a variety of 

acceptors (DNA and histones) to form S-

adenosylhomocysteine (SAH) [19]. SAH can be further 

metabolized into homocysteine by S-

adenosylhomocysteinase (Ahcy). Ahcy is a bidirectional 

enzyme and also catalyzes homocysteine and adenosine 

to form SAH. Homocysteine regenerates Met via MTR or 

involves in Cys metabolism (reviewed at [2]). 

Cystathionine β-synthase (CBS) and cystathionine γ-
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lyase (CSE) contribute to Cys generation from 

homocysteine [20]. Cys is further used for GSH 

synthesis in two successive enzymatic ATP-dependent 

reactions catalyzed by glutamate cysteine ligase (GCL) 

and GSH synthase (GS) [21, 22]. 

 Met can be metabolized to cysteine (Cys) 

through transsulfuration pathway and Cys mainly 

contributes to generation of GSH, taurine, and H2S. GSH, 

the most abundant cellular thiol antioxidant, can directly 

scavenge ROS and be oxidized into glutathione disulfide 

(GSSG) or serve as a cofactor for the enzyme 

glutathione peroxidase (GPx) in metabolizing H2O2 and 

lipid peroxides [2, 21]. Thioredoxin reductase-1 (TrxR1) 

and glutathione reductase (GR) are two major 

intracellular reducing power, which reduces GSSG back 

to GSH using nicotinamide adenine dinucleotide 

phosphate (NADPH). Mice genetically engineered to lack 

both TrxR1 and GR cannot reduce oxidized GSSG and 

are more susceptible to oxidative stress, while dietary 

methionine provides the cytosolic disulfide-reducing 

power and methionine-fueled transsulfuration supplies 

the necessary Cys precursor for GSH synthesis in TR/GR-

null livers [23], suggesting that hepatocytes can 

adequately sustain cytosolic redox homeostasis 

pathways after adequate methionine uptake. Taurine 

and H2S also exhibit antioxidant function and has been 

reviewed at [2]. 

Pentose Phosphate Pathway (PPP) 

 PPP branches from glycolysis of glucose 

metabolism and plays an important role in the cellular 

redox homeostasis via providing NADPH, which powers 

reductive biosynthesis and contributes to detoxification 

of intracellular ROS [3, 24]. The PPP is the most direct 

route to produce NADPH from glucose and inhibition of 

PPP results in the reduction of cellular NADPH/NADP+ 

[25]. The PPP subdivides into two branches: the 

oxidative branch and non-oxidative branch. The 

oxidative branch yields two NADPH per metabolized 

glucose-6-phosphate. Firstly, glucose-6-phosphate 

dehydrogenase (G6PD) catalyzes glucose and glucose-6-

phophate dehydrogenation to form NADPH and 6-

phosphogluconlactone, which is subsequently hydrolyzed 

by phosphogluconolactonase (6PGL) into 6-

phosphogluconate. G6PD-deficient patients, who are 

unable to regenerate enough NADPH for maintenance of 

GSH pool, exhibit high susceptibility to oxidative stress 

under a stressful situation [26]. 6-phosphogluconate 

dehydrogenase (6PGDH) further catalyzes the oxidative 

decarboxylation of 6-phosphogluconate to yield NADPH 

and ribulose-5-phosphate (Ru5P), which is then enters 

the non-oxidative branch and can be converted either to 

ribose 5-phosphate by ribose 5-phosphate isomerase 

(RPI) or to xylulose 5-phosphate by ribulose 5-

phosphate epimerase (RPE) [27]. The oxidative branch 

of PPP mainly maintains cellular redox homeostasis, 

while the non-oxidative branch involves in nucleic acid 

metabolism. The PPP can be in response to different 

physiological conditions and then maintain metabolic 

demands of cells. For example, the PPP favors to 

accelerate the metabolism of oxidative branch under 

oxidative stress and then generate more NADPH to 

replenish the antioxidant system against the excess ROS 

generation [28]. 

 Met has been demonstrated to target on PPP at 

various metabolic points. Firstly, Met has been 

demonstrated to regulate PPP via increasing NADPH 

production and 6PGDH activity [29]. In the thiol 

oxidizing agent diamide challenged cells, Met 

supplementation from 0 mg/L to 200 mg/L markedly 

enhances cell resistance to oxidative stress, while the 

protective effect is abolished by deletion of 6PGDH [29], 

the rate limiting enzyme of oxidative PPP, suggesting 

that Met improves oxidative PPP metabolism and the 

PPP serves as a potential mechanism of Met against 
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oxidative stress.  
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