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Abstract 
Factors that contribute to the onset of atherosclerosis may be elucidated by bioinformatic techniques applied to 
multiple sources of genomic and proteomic data.  The results of genome wide association studies, such as the 
CardioGramPlusC4D study, expression data, such as that available from expression quantitative trait loci 
(eQTL) databases, along with protein interaction and pathway data available in Ingenuity Pathway Analysis 
(IPA), constitute a substantial set of data amenable to bioinformatics analysis. This study used bioinformatic 
analyses of recent genome wide association data to identify a seed set of genes likely associated with 
atherosclerosis. The set was expanded to include protein interaction candidates to create a network of proteins 
possibly influencing the onset and progression of atherosclerosis.  Local average connectivity (LAC), 
eigenvector centrality, and betweenness metrics were calculated for the interaction network to identify top 
gene and protein candidates for a better understanding of the atherosclerotic disease process. The top ranking 
genes included some known to be involved with cardiovascular disease (APOA1, APOA5, APOB, APOC1, APOC2, 
APOE, CDKN1A, CXCL12, SCARB1, SMARCA4 and TERT), and others that are less obvious and require further 
investigation (TP53, MYC, PPARG, YWHAQ, RB1, AR, ESR1, EGFR, UBC and YWHAZ). Collectively these data 
help define a more focused set of genes that likely play a pivotal role in the pathogenesis of atherosclerosis 
and are therefore natural targets for novel therapeutic interventions.  
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Introduction 

 Atherosclerosis is a multifactorial disease with a 

strong genetic component. Genome wide association 

studies for coronary artery disease (CAD) related 

phenotypes have identified at least 56 susceptibility loci 

at genome wide significance 1;2, and a study into the 

role of low-frequency (frequency 1% - 5%) and rare 

(frequency < 1%) DNA sequence variants in early onset 

myocardial infarction (MI) identified additional candidate 

genes 3.  Investigation of proteins encoded by genes in 

close proximity to the susceptibility loci or implicated in 

the analysis of rare variants may lead to an enhanced 

understanding of the molecular mechanisms of 

atherosclerosis, and thereby facilitate the identification 

of novel candidates for targeted therapeutic 

interventions.  

 As part of the Genomic and Proteomic 

Architecture of Atherosclerosis (GPAA) project, we plan 

to utilize sensitive and highly accurate targeted mass 

spectrometry to quantify and thereby validate proteins 

identified as putative pathogenic candidates driving 

coronary artery disease. Multiple reaction monitoring 

(MRM) experiments will be performed on arterial tissue 

samples from individuals with and without extensive 

premature atherosclerosis collected as part of the 

Pathobiological Determinants of Atherosclerosis in Youth 

(PDAY) study 4.  The PDAY study measured the extent 

and prevalence of atherosclerosis in 2,876 subjects 

between the ages of 15 and 34 who died of non-cardiac 

related causes.  In order to utilize this precious resource 

to its full potential, we must first identify candidate 

proteins for assay development, and we seek to identify 

these candidates by combining discovery proteomics 

with bioinformatic data mining of network and pathway 

analysis of SNPS and genes associated with coronary 

disease from previous GWAS and rare variant 

association studies. Our goal is to expand the list of 

candidate proteins beyond the handful of well-known 

atherosclerosis proteins to include additional and novel 

proteins that represent the full spectrum of pathogenic 

molecular events underlying atherosclerosis 

development. Within the context of the GPAA project, 

the purpose of the current analysis is to identify relevant 

proteins, encoded by genes near susceptibility loci, to 

define an expanded set of candidate proteins 

hypothesized to contribute to the onset or development 

of atherosclerosis. 

 Graph theory and pathway analysis of protein 

interactions has proven useful for identifying essential 

proteins in complex protein networks 5;6 and elucidating 

physiologic mechanisms for complex traits, such as 

familial combined hyperlipidemia 7.   Likewise, 

epigenetic feature analysis, based on publically available 

Encyclopedia of DNA Elements (ENCODE) data 8, has 

the potential to identify regulatory regions of the 

genome controlling expression of members of such 

networks, and the likelihood that SNPs in these regions 

are involved in this regulation.  In this work, we used 

the results of genome wide association studies 2 and 

gene regulation data to identify a seed set of CAD 

associated genes. We then constructed the gene 

interaction network using Ingenuity Pathway Analysis 

(IPA; Ingenuity Systems, Redwood City, CA) to include 

other genes that interact with the seed set. We 

performed the network analysis to identify key gene 

nodes in the interaction network.  To complement 

similar analyses that have been performed previously 

2;9;10, we focused on two network properties in 

particular: centrality and betweenness 6.  Betweenness 

is a measure of the number of shortest paths in a 

network that pass through the node; this is an indication 

of the importance that node has in connecting sub-

networks within the network. Centrality can be 

measured in several ways; we used eigenvector 

centrality, which measures importance of a node as a 

function of that node’s links to other important nodes 

11;12. We hypothesized that gene nodes with high 

betweenness scores may be links between functional 
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modules, whereas gene nodes with high centrality 

scores may participate in multiple functional modules. 

Changes in the functioning of these high scoring gene 

nodes may disrupt functional modules and ultimately 

effect variability in phenotypes.  In addition, we used 

the local average connectivity based method, LAC, for 

identifying essential proteins from the network level 13. 

LAC determines a protein’s essentiality by evaluating 

the relationship between a protein and its neighbors. 

LAC has been applied to predict the essentiality of 

proteins in yeast protein interaction networks and has 

been shown to outperform Eigenvector Centrality, 

Betweenness Centrality, Closeness Centrality, Bottle 

Neck, Information Centrality, Neighborhood 

Component, and Subgraph Centrality for identifying 

yeast essential proteins based on the different 

validations of sensitivity, specificity, and accuracy13. 

However, the LAC method has not yet been applied to 

cardiovascular disease gene network analysis. In this 

study, we applied LAC in combination with the two 

commonly used network analysis methods, eigenvalue 

centrality and betweenness, to identify top gene 

candidates that are potentially playing key roles in the 

atherosclerosis disease network. 

Materials and Methods 

 Selection and Curation of CAD Associated 

Genes.  We included the genes assigned to the SNPs in 

the original CARDIoGRAM publication (“positional 

candidates”), as well as any genes linked to these SNPs 

in previously published expression quantitative trait loci 

(eQTL) analyses. The initial set of target genes was 

based on 162 unique SNPs identified by the 

CARDIoGRAM GWAS meta-analysis 2. These included 

the “known CAD susceptibility loci” (Table 1 in Deloukas 

et al, 2013 2), “Additional loci showing genome-wide 

significant association with CAD” (Table 2 in Deloukas 

et al, 2013 2), and “SNPs at an FDR≤5% and LD 

threshold of r2 < 0.2 used in estimating 

heritability” (Supplementary Table 9 in Deloukas et al, 

2013 2). To identify potential eQTLs, we first expanded 

the list of 162 candidate SNPs using linkage 

disequilibrium (LD) to identify proxy SNPs.  LD was 

determined with the Broad Institute’s SNP Annotation 

and Proxy (SNAP) search tool (http://

archive.broadinstitute.org/mpg/snap) using an r2 > 0.8 

in either the 1000 Genomes or HapMap data sets, 

based on the CEU population, within 500kb.  All SNPs 

within the LD regions, including the original SNPs, were 

searched for eQTLs using the University of Chicago 

eQTL browser (eqtl.uchicago.edu), which contains data 

from 17 published studies.  For each candidate SNP, 

the eQTLs with the highest score (-log10 p-value) are 

shown along with the proxy SNP (Supplemental Table 

S1). 

 Construction of Gene Interaction Networks.  

The selected CAD associated genes from above were 

used as the initial set of genes to construct gene 

interaction networks using IPA. IPA constructs networks 

based on extensive molecular interaction records 

maintained in the Ingenuity Pathways Knowledge Base 

(IPKB)14,15. IPKB is the largest curated database of 

biological networks, created from millions of 

relationships between genes and gene products.  Given 

a list of genes/proteins, IPA can identify a set of 

relevant networks that these genes/proteins are 

involved in. IPA can merge the smaller networks into 

larger ones by using linker genes/proteins (common 

genes/proteins shared by the smaller networks). In this 

study, the larger merged network was used for the 

centrality and betweenness analysis to identify the key 

players in the network. 

 The experimentally observed relationships, 

such as protein-protein interactions, protein-DNA 

interactions, protein-RNA interactions, co-expression, 

translocation, activation, inhibition, molecular cleavage, 

membership, and phosphorylation were used to bring in 

other interacting molecules from the Ingenuity 

Knowledge Base to the network, and the additional 
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molecules were used to specifically connect two or more 

smaller networks by merging them into a larger one. 

The resulting multiple networks were then merged into 

one network. The following parameters were used in the 

network construction: 1) All genes and chemicals in the 

Ingenuity Knowledge Base were used as the reference 

set and the species was set to human; 2) Only the direct 

relationships were considered; 3) The confidence level 

was set to be “Experimentally Observed” to retrieve the 

relationships that have been experimentally observed; 

4) The number of molecules per network and the 

number of networks were set to the maximum allowed, 

140 and 25, respectively.  

 Gene Interaction Network Analysis.  Network 

analysis was performed using Cytoscape 

(www.cytoscape.org, version 3.1.1) and the CytoNCA 

plugin 16. Local average connectivity (LAC), eigenvector 

centrality and betweenness scores were calculated for 

each gene in the gene interaction network using 

CytoNCA. The direction of the edges is not considered in 

the network analysis. Parallel edges between two gene 

nodes represent different types of relationships that 

were observed between those two nodes.  To reduce 

redundancy, these parallel edges and self-loops were 

removed in the network analysis. 

 Pathway Analysis Methods.  Candidate genes 

selected from the network analysis were again analyzed 

with IPA for biological functions, cellular locations, 

signaling and metabolic canonical pathways, and 

associated diseases. The p-values for the identified 

canonical pathways, disease associations and functions 

were calculated using Fisher's exact test. The Benjamini-

Hochberg method was used to estimate the false 

discovery rate (FDR), and an FDR-corrected p-value of 

0.05 was used to select significantly enriched pathways.  

 

 

 

Availability of data and materials 

Additional data used in this study is available in 

Supplemental Tables 1 through 5. 

Ethics and Consent to participate 

The original data used in this manuscript was obtained 

from published material, and no additional human 

subjects were included. 

Results 

 CAD Associated Gene Prioritization.  The 162 

CARDIoGRAMplusC4D SNPs were associated with 160 

unique genes, based on proximity alone.  eQTLs were 

prioritized by selecting cis SNPs with a minimum eQTL 

score of 6 (p=10-6 in their respective, original study).  

eQTL analysis with the 162 SNPs and their LD proxies 

identified an additional 34 unique genes that were not 

included in the previous publication. Seventeen of the 

original positional candidates were also eQTLs 

(Supplemental Table S1). Twelve SNPs were associated 

with expression of at least two nearby genes, with a 

maximum of four genes for rs602633 (CELSR2, SORT1, 

PSRC1, and PSMA5). The strongest overall eQTL was 

with rs1412444, a proxy for the original SNP rs2246833 

(r2=1.0) and LIPA expression in monocytes (eQTL score 

= 163.21).  The original 160 positional genes and the 34 

unique eQTL genes were combined for all downstream 

analyses, for a total of 194 unique genes.  

 Construction of the Gene Interaction Network.  

Of the 194 unique, CAD-associated genes curated from 

the CardioGramPlusC4D study and the eQTL analysis 

combined, 185 of these were found and mapped in the 

IPA database. These genes were used as seeds for the 

network construction. IPA network construction 

identified four major networks (Supplemental Table S2). 

These four networks were then merged into one large 

network, which included 422 connected nodes 

(molecules) with 1890 edges (relationships) 

(Supplemental Table S3).  
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Gene Interaction Network Analysis.  Supplemental 

Table S4 shows the LAC, eigenvector centrality, and 

betweenness results from the CytoNCA network 

analysis.  The top thirty network nodes ranked by each 

of the analysis methods, LAC, eigenvector centrality, 

and betweenness, are listed in Table 1. These nodes 

include genes, gene groups and chemicals. Among the 

top genes ranked by LAC, 10 were from the original 

seed set (highlighted in red; CDKN1A, APOE, SMARCA4, 

APOA1, APOC2, TERT, APOB, APOC1, APOA5 and 

SCARB1). Among the top genes ranked by eigenvector 

centrality, five were from the original seed set 

(highlighted in red; CDKN1A, SMARCA4, APOA1, APOE 

and TERT).  Among the top genes ranked by 

betweenness, four were from the original seed gene set 

(highlighted in red; APOA1, CDKN1A, SMARCA4 and 

CXCL12).  Three seed genes CDKN1A, SMARCA4 and 

APOA1 (red text and underlined) were the common, top

-ranked genes identified by all three methods (LAC, 

eigenvector centrality, and betweenness), indicating the 

importance of these genes in the network. In addition 

to these three common seed genes, ten genes not in 

the original seed set were also identified by all three 

methods. These 10 new genes are TP53, MYC, PPARG, 

YWHAQ, RB1, AR, ESR1, EGFR, UBC and YWHAZ.  

 Combining the LAC, eigenvector centrality, and 

betweenness lists in Table 1, a total of 10 genes 

(CDKN1A, APOE, SMARCA4, APOA1, APOC2, TERT, 

APOB, APOC1, APOA5 and SCARB1) are from the 

original seed set, which suggests that these CAD 

associated genes are important in the gene interaction 

network. Figure 1 shows the interactions between these 

10 genes (in red) and their interacting genes (in blue) 

and chemicals (in green) in the gene interaction 

network. Most of these top genes are highly connected 

in the sub-network. 

 

Pathway Analysis. The top-ranked proteins from Table 

1 were selected to perform metabolic and signaling 

canonical pathways analysis using IPA. The result is 

shown in Supplemental Table S5. The top ten pathway 

hits were FXR/RXR Activation, Clathrin-mediated 

Endocytosis Signaling, Telomerase Signaling, IL-12 

Signaling and Production in Macrophages, Prostate 

Cancer Signaling, ERK/MAPK Signaling, Myc Mediated 

Apoptosis Signaling, LXR/RXR Activation, 

Atherosclerosis Signaling and Estrogen-mediated S-

phase Entry (Table 2).  

Discussion 

 In this study, protein-protein interaction 

networks were analyzed to identify proteins with 

potentially essential roles (high centrality) and those 

with minimal functional redundancy (high 

betweenness).   Starting with known susceptibility loci, 

we identified proteins encoded by genes near 

susceptibility loci and identified those proteins most 

likely to act as hubs and bottlenecks.  Ranking proteins 

by local average connectivity, betweenness, and 

centrality scores provides a method for prioritizing 

targets for future MRM mass spectrometry experiments, 

designed to identify proteins contributing to the onset 

or development of atherosclerosis. Proteins with high 

ranks in LAC, eigenvector centrality, and betweenness 

scores are considered top candidates for further 

investigation with experimental proteomics techniques.  

 Our network analysis using LAC, eigenvector 

centrality, and betweenness methods identified a set of 

49 high ranking molecules based on their importance 

and connectivity within the interaction network we 

constructed.  Among these 49 molecules, several 

already have a very well established and known 

association with cardiovascular disease risk, including 

APOA1, APOA5, APOB, APOC1, APOC2, APOE, CDKN1A, 

CXCL12, SCARB1, SMARCA4 and TERT (e.g., 17-21). 

While these well-established proteins serve as an 

important validation for our approach, of potentially 

more biological interest are the additional and more 

novel candidates identified with our expanded network 
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Gene/Chemical LAC Gene/Chemical Eigenvector  Gene/Chemical Betweenness 

CDKN1A 9 TP53 0.293992 APP 40725.25 

TP53 8.441559 APP 0.242665 HNF4A 24356.68 

APOE 8 ESR1 0.235588 ELAVL1 23250.77 

MYC 7.107143 MYC 0.225831 Gpcr 21763.95 

PPARG 7.032258 UBC 0.194388 TP53 20339.18 

YWHAQ 6.571429 CDKN1A 0.188231 ESR1 15732.38 

SMARCA4 6.5625 HNF4A 0.179053 UBC 13405.76 

RNA polymerase II 6.5 AR 0.167393 MYC 10966.7 

RB1 6.307693 ELAVL1 0.163778 CREB1 9632.628 

AR 6.243902 EGFR 0.159149 NXF1 7906.177 

HSPA8 6.24 PPARG 0.15383 EGFR 7797.91 

APOA1 6.214286 SMARCA4 0.150114 VHL 7234.26 

Hsp70 6 YWHAZ 0.149565 YWHAZ 7099.747 

APOC2 6 YWHAQ 0.144655 AR 7044.75 

ESR1 5.768116 RB1 0.134934 DLG4 6159.478 

TERT 5.666667 HSPA8 0.134347 PPARG 5938.707 

Histone h3 5.6 CREB1 0.132037 GRB2 5115.18 

EGFR 5.55 APOA1 0.130066 VCP 5050.226 

APOB 5.5 RNA polymerase II 0.121485 REL 4567.824 

NFkB (complex) 5.375 APOE 0.118555 APOA1 4350.606 

APOC1 5.333334 GRB2 0.116974 GPR12 3997.739 

APOA5 5.333334 VHL 0.115261 collagen 3765.427 

SCARB1 5.142857 Hsp70 0.114036 CDKN1A 3632.875 

UBC 5.107143 VCP 0.110983 SMARCA4 3361.238 

Histone h4 4.888889 Histone h3 0.110957 F2R 3271.263 

estrogen receptor 4.769231 TERT 0.106133 YWHAQ 3228.63 

HDL 4.666667 ZFP36 0.09736 CXCL12 3088.951 

Akt 4.571429 PPARA 0.096878 ZFP36 2985.264 

YWHAZ 4.444445 NFkB (complex) 0.090869 LATS2 2786.828 

N-cor 4.4 REL 0.085653 RB1 2672.204 

Table 1. Top network nodes ranked by LAC, eigenvector centrality and betweenness scores. 

(The genes from the original seed set are highlighted in red. The common seed genes identified 

by all three methods are in red text and underlined  
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approach. These included TP53, MYC, PPARG, YWHAQ, 

RB1, AR, ESR1, EGFR, UBC and YWHAZ, which were 

identified by all three analysis methods, but do not have 

the same level of prior literature evidence supporting a 

known association with cardiovascular disease.  These 

proteins also rank highly by betweenness scores, 

indicating they may be involved in multiple pathways, 

and fewer proteins may perform their function within 

pathways. In our study, each of these novel proteins 

interacted with at least three of our seed proteins 

(Figure 1), supporting the plausible importance of their 

role in the biology of coronary artery disease and 

atherosclerosis progression.   

 Four of these 10 highly-connected novel genes 

(TP53, MYC, YWHAQ, and YWHAZ) were also identified 

recently in an independent publication as “Predicted CVD 

genes” using a different pathway-based approach22.  

Both TP53 and MYC are well-known for their role in 

cancer and may also be involved in the regulation of 

smooth muscle cell proliferation during neointima 

formation in coronary artery disease 23;24.  Much less is 

known about YWHAQ and YWHAZ, which are highly 

conserved scaffolding proteins of the 14-3-3 family, 

involved in multiple signal transduction pathways 

including those linked to p53 apoptosis signaling25 and 

Epidermal Growth Factor Receptor (EGFR) signaling26. 

The EGFR protein was another of the 10 novel top 

proteins identified in this analysis, and is a well-known 

activator of ERK/MAPK signaling which was among the 

top canonical pathways from the IPA analysis of these 

data. While EGFR is known to be expressed in 

atherosclerotic plaques 27;28, its mechanistic role in 

coronary artery disease pathogenesis is as yet unclear. 

Interestingly, another cell-signaling scaffold protein, 

Growth Factor Receptor Binding Protein 2 (GRB2), was 

also detected among our top 49 candidate proteins, and 

together with YWHAZ, has been shown to be involved in 

the clathrin-endocytosis mediated internalization of 

EGFR29.  Furthermore, GRB2 has been identified as a 

critical protein for neointima and atherosclerotic lesion 

formation in ApoE -/- mouse models of coronary artery 

disease30;31. These connections become rather 

interesting in light of our observation of “clathrin-

mediated endocytosis” as a top pathway in the IPA 

analysis (Table 2) connecting several of our candidate 

proteins. Taken together, these data indicate that the 

multifunctional signaling scaffold proteins YWHAZ, 

YWHAQ, and GRB2, may represent critical hubs for the 

EGFR, and other growth factor, signaling networks and 

may represent important nodes in the molecular 

cascades that become dysregulated in coronary artery 

disease.   

 Interesting potential links to atherosclerosis can 

also be found among the remaining 10 novel proteins 

Ingenuity Canonical Pathways B-H p-value Genes 

FXR/RXR Activation 4.68E-10 PPARG,PPARA,APOE,APOB,APOA1,SCARB1,APO

Clathrin-mediated Endocytosis Sig-
naling 

7.76E-09 
HSPA8,APOE,APOB,APOA1,F2R,GRB2,APOC1,AP

OC2,UBC 

Telomerase Signaling 5.01E-08 TP53,MYC,RB1,GRB2,TERT,CDKN1A,EGFR 

IL-12 Signaling and Production in 3.39E-07 PPARG,APOE,APOB,APOA1,APOC1,APOC2,REL 

Prostate Cancer Signaling 4.68E-07 TP53,RB1,AR,GRB2,CREB1,CDKN1A 

ERK/MAPK Signaling 2.51E-06 PPARG,YWHAQ,MYC,GRB2,CREB1,YWHAZ,ESR1 

Myc Mediated Apoptosis Signaling 2.88E-06 YWHAQ,TP53,MYC,GRB2,YWHAZ 

LXR/RXR Activation 2.88E-06 APOE,APOB,APOA1,APOC1,APOA5,APOC2 

Atherosclerosis Signaling 2.88E-06 APOE,APOB,APOA1,CXCL12,APOC1,APOC2 

Estrogen-mediated S-phase Entry 2.88E-06 MYC,RB1,CDKN1A,ESR1 

Table 2.  Top pathway hits of the selected network genes 

http://www.openaccesspub.org/
http://openaccesspub.org/
http://openaccesspub.org/journal/jpgr
http://dx.doi.org/10.14302/issn.2326-0793.jpgr-17-1447


 

 

Freely Available  Online 

www.openaccesspub.org  |  JPGR          CC-license            DOI : 10.14302/issn.2326-0793.jpgr-17-1447            Vol-2 Issue 1 Pg. no.-  8 

 

Figure 1. The interactions between 10 top ranking genes (red nodes) and their interacting genes 

(blue nodes) and chemicals (green nodes) in the sub-network. The graph was generated with Cyto-

scape 35. 
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identified in the LAC, Eigenvector, and betweenness 

rankings. The Retinoblastoma-associated protein (RB1) 

is a component of a transcriptional-repressor complex 

that interacts with the well-known cardiovascular 

disease protein SMARCA4, which was also top ranked in 

our analysis.  Another transcriptional regulator, 

peroxisome proliferator-activated receptor gamma 

(PPARG), which regulates genes involved in fatty acid 

metabolism and inflammation, is expressed in 

atherosclerotic lesions and is thought to negatively 

regulate pro-atherosclerotic processes, suggesting the 

potential use of PPAR-activators for atherosclerosis 

treatment32. The combined observation of androgen 

receptor (AR) and estrogen receptor (ESR1) suggest 

that the reproductive steroid hormones testosterone and 

estradiol may play intriguing roles in coronary artery 

disease progression and thus may also represent 

important sex-dependent mechanisms in atherosclerosis 

pathogenesis33. Finally, in addition to poly-ubiquitin 

(UBC) identified in our top 10 novel proteins, two other 

components of ubiquitin-proteasomal degradation, 

valosin-containing protein (VCP) and von-hippel lindau 

tumor suppressor (VHL) were also found among the top 

49 molecules in our expanded network. Together these 

three proteins are consistent with an emerging 

hypothesis regarding the importance of the ubiquitin-

proteasomal degradation pathway in the pathogenesis of 

atherosclerosis34;35.  

 To summarize, there are numerous biological 

connections between the top ranked proteins identified 

in this expanded network analysis of coronary artery 

disease genes, and these connections support the 

inclusion of these molecules as candidates for follow-up 

analysis in the GPAA project. Furthermore, these 

discoveries support the utility of this expanded approach 

to the analysis of genomic scale datasets for the 

identification of candidate disease proteins. The validity 

of our approach can be illustrated by the APOA1 node in 

our predicted network. Mutations that alter the 

functioning of APOA1 could adversely impact the 

functioning of several interacting proteins, as indicated 

by the high hub score of the APOA1 node. In addition, 

APOA1 interacts strongly with other apolipoproteins 

(e.g., APOB, APOE) that also have high node scores.  

LDLR interacts with all three of these proteins (Figure 

1), and exome sequencing recently identified a marked 

increased risk of myocardial infarctions in individuals 

with rare mutations in LDLR 3, further highlighting the 

utility of evaluating proteins targeted within the 

biological hub. 

 As further validation of biological relevance, our 

pathway analysis of the top ranked proteins in the 

network analysis identified a list of pathways that are 

known to influence atherosclerosis (Table 2). In addition 

to the four pathways, Atherosclerosis signaling, LXR/RXR 

activation, FXR/RXR activation and Acute phase 

response signaling, which were previous identified by 

Deloukas et al 2, we identified additional disease related 

pathways such as Clathrin-mediated Endocytosis 

Signaling, Telomerase Signaling, IL-12 Signaling and 

Production in Macrophages, Prostate Cancer Signaling, 

ERK/MAPK Signaling, Myc Mediated Apoptosis Signaling, 

and Estrogen-mediated S-phase Entry.  

 Our analysis had some similarities with previous 

analyses 2;9;10;22;36, in that we focused on the top 

SNP associations, and then expanded that list with eQTL 

findings.   While some of these studies also used 

pathway and gene ontology analyses, our analyses went 

considerably beyond previous work by focusing on the 

interactions of the seed proteins with others, based 

primarily on the centrality and betweenness of the 

molecules. This was done independent of the role of the 

additional proteins, allowing us to identify several 

proteins that have not received serious attention as 

candidates to monitor in studying the pathophysiology of 

CVD-related processes.   

 Our study, like other protein-protein interaction 

analyses, was limited by the current state of knowledge 

http://www.openaccesspub.org/
http://openaccesspub.org/
http://openaccesspub.org/journal/jpgr
http://dx.doi.org/10.14302/issn.2326-0793.jpgr-17-1447


 

 

Freely Available  Online 

www.openaccesspub.org  |  JPGR          CC-license            DOI : 10.14302/issn.2326-0793.jpgr-17-1447            Vol-2 Issue 1 Pg. no.-  10 

of protein interactions.  The lack of evidence for 

interactions between proteins should not be interpreted 

as evidence for lack of such an interaction.  Proteins 

with high betweenness scores may be actual bottlenecks 

in metabolic or regulatory pathways, or they may be 

understudied macromolecules that warrant further 

investigation.  A risk of using literature-based interaction 

analysis is that well-published proteins or genes may 

appear more commonly. This may account for the 

identification of a portion of our newly identified proteins 

(e.g., TP53, MYC), but not for others, where little 

published work is available (e.g., YWHAQ, YWHAZ).  The 

set of protein interactions analyzed in this study were 

not filtered based on location of expression, and some 

interactions may only occur in tissues unrelated to 

atherosclerosis.  Including such interactions may lead to 

overestimates in the centrality scores. However, filtering 

based on known expression locations may also eliminate 

relevant interactions if the proteins are not included in 

tissue expression databases; this could lead to over 

estimates in the betweenness scores. Finally, our 

approach used the genes nearest to the associated SNPs 

when eQTLs were not identified. More distal genes may 

be regulated by these SNPs, but without additional 

functional data these loci were difficult to identify and 

we used the most likely genes to be involved in each 

region. 

Conclusion 

 Using a protein-protein interaction network 

approach, we have identified the most likely genes 

involved in CAD-related phenotypes using the 

CARDIoGRAM GWAS meta-analysis as a starting point 2.  

In addition to the well-known candidates, we identified a 

subset of genes that interact with these likely 

contributors, but have not otherwise been associated 

with CAD. These new candidates represent novel targets 

for assay development and MRM-based monitoring to 

determine their expression profile and its correlation to 

atherosclerotic disease in the PDAY sample set. 

Ultimately, the goal of this project is to prioritize these 

proteins in terms of their likely effectiveness as targets 

for therapeutic intervention, and perhaps offer the 

opportunity to develop novel as well as repurpose 

existing drugs for cardiovascular and atherosclerosis 

related conditions. 
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