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ABSTRACT    

 

Continuous-time glucose monitoring (CGM) effectively improves glucose control, as oppose to infrequent 

glucose measurements (i.e. using Lancet Meters), by providing frequent blood glucose concentration 

(BGC) to better associate this variation with changes in behavior. Currently, the most widely used CGM 

devices rely on a sensor that is inserted invasively under the skin. Because of the invasive nature and 

also the replacement cost of sensors, the primary users of current CGM devices are insulin dependent 

people (type 1 and some type 2 diabetics). Most non-insulin dependent diabetics use only lancet glucose 

measurements. The ultimate goal of this research is the development of CGM technology that overcomes 

these limitations (i.e. invasive sensors and their cost) in an effort to increase CGM applications among 

non-insulin dependent people. To meet this objective, this preliminary work has developed a 

methodology to mathematically infer BGC from measurements of non-invasive input variables which can 

be thought of as a “virtual” or “soft” sensor approach. In this work virtual sensors are developed and 

evaluated on 20 subjects using four BGC measurements per day and eight input variables representing 

meals, activity, stress, and clock time. Up to four weeks of data are collected for each subject. One 

evaluation consists of 3 days of training and up to 25 days of testing data. The second one consists of 

one week of training, one week of validation, and 2 weeks of testing data. The third one consists two 

weeks of training, one week of validation and one week of testing data.  Model acceptability is 

determined on an individual basis based on the fitted correlation to CGM testing data. For 3 day, 1 week, 

and 2 weeks training studies, 35%, 55% and 65% of the subjects, respectively, met the Acceptability 

Criteria that we established based on the concept of usefulness. 
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Introduction 

Recent research suggests that real-time, frequent, 

glucose monitoring can improve blood glucose control 

over infrequent monitoring provided through the use of 

lancet glucose meters for both insulin dependent [1]-[6], 

and non insulin dependent diabetics [7]. Frequent 

glucose measurement capability is referred to as 

continuous-glucose monitoring (CGM); although not 

really continuous, current devices can deliver on-line 

glucose measurements as often as every one to five 

minutes [8]. Nonetheless, this is a substantial 

improvement over lancet monitoring that only produces 

a few values (e.g. four values) per day, at best. CGM 

therefore improves the user’s ability to achieve better 

glucose control by providing frequent, real-time, glucose 

concentration levels that enables correlation with activity 

and food consumption. For example, a user is able to 

see with a high frequency display rate the extent to 

which the size of a meal affects glucose changes. 

Currently, the most widely used and effective CGM 

devices rely on a sensor that is inserted invasively under 

the skin. Sensors cost from $35 to $60 and last 3 days 

to a week. Thus, two significant drawbacks of these 

devices are comfort and cost [9].  Given these 

drawbacks, these devices are not widely used except by 

insulin dependent diabetics that rely heavily on a fast 

sampling rate for better control. For this reason, these 

devices are less likely to be used by non-insulin 

dependent people, including non-diabetic, pre-diabetics 

and diet-controlled type 2 diabetics.  

Hence, the motivation of this work is the 

development of a useful, non-invasive,  

subject-specific (personalized), continuous monitoring 

system in an effort to increase CGM among non-insulin 

dependent people.   

To achieve this goal we seek to develop a low 

maintenance, high frequency monitoring system with an 

accuracy that is high enough to be useful for non-insulin 

dependent people. Moreover, this preliminary work 

proposes an inferential (i.e., virtual) sensor approach for 

predicting blood glucose concentration (BGC) from 

noninvasive inputs. This virtual sensor updates at the 

same rate as conventional physical sensor CGM devices. 

The model is developed from lancet BGC measurements 

that are obtained at a rate of four measurements per 

day. Since each sensor is calibrated from user data, the 

model developed for each person is said to be “subject-

specific.” While inferential modeling of BGC has been 

done by a number of researchers [19]-[24], [29], [31] 

particularly in type 1 diabetic applications using frequent 

glucose measurements, this is the first approach that we 

are aware of that seeks to develop an inferential model 

for non-insulin dependent subjects using infrequent 

lancet measurements from the subject’s personal lancet 

glucose meter. Our approach to achieve this goal is to 

use a novel modeling method to infer glucose 

concentration using non-invasive input measurements 

for each subject from variables representing food, 

activity, clock time[10]-[12], and stress[13],[14].  

Methods 

The main physical component of this system is a 

BodyMedia® armband of the type shown in Fig. 1. This 

device is a multi-sensor monitoring device that provides 

accurate estimates of physical activity data using 

accelerometers, heat related sensors and galvanic skin 

response (GSR) [15]. GSR is the conductivity of the 

wearer’s skin that varies due to physical and emotional 

stimuli. For more details see [27], [28]. Given that the 

armband currently uses complex algorithms (e.g., for 

pattern recognition) it should also be able to incorporate 

our proposed BGC prediction algorithm. However, this 

research is beyond the scope of this article which is 

focused on the development of the modeling 

methodology.  

The most critical challenge in this highly 

complex, non-linear, multiple-input, highly 

underdetermined modeling problem is the estimation of 

a large set of dynamic and static parameters from a very 

small set of BGC data, with a sampling frequency of only 

4 values per day. To achieve accuracy under these 

conditions is a significant advancement over the work of 

Rollins et al. and a unique accomplishment. Other 

challenges include adequately guarding against over-

fitting, the lack of initial steady state data, low quality 
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meal information that uses a designation of small, 

medium and large, and frequent and arbitrary removal 

of the armband monitor. Through novel modifications of 

the Rollins et al. [16] approach, this work demonstrates 

an ability to overcome these challenges, and thus, has 

promising potential to develop an effective inferential 

continuous-time BGC sensor for the target population of 

non-insulin dependent people. The details of the 

proposed modeling approach are now described. 

The Modeling Approach 

The basic objective of this work is the development of a 

subject-specific “soft sensor” or “virtual” sensor 

methodology that provides “useful” information to help 

individuals monitor and control their glucose more 

effectively than with lancet glucose meters. The most 

critical and challenging objective  in this highly 

underdetermined problem is that the model must be 

developed from a BGC sampling rate of only four 

samples per day. These samples will come from the 

lancet meter of the subject and the idea is to transform 

these measurements to a CGM display frequency during 

the period of the day that the subject is not sleeping. 

This virtual sensor approach is an inferential model that 

is developed from measured variables that are termed 

inputs. This virtual sensor idea has seen wide 

applications in process monitoring and control 

applications in recent years [17], [18] due to 

advancements in computer hardware, software, and 

measurement technology. Note that to distinguish the 

type of sensor, i.e., “virtual” versus “physical,” we will 

use the terms “virtual-sensor” and “physical-sensor.” In 

addition, it should be noted that our use of “monitoring” 

include both the use of a virtual-sensor or physical-

sensor although virtual sensors do not measure the 

process variable being monitored directly. This major 

challenge in this work is the frequency of BGC data for 

model building (in this research, 4 times per day) is 

much less than the virtual measurement rate of 5 

minutes. This limitation means that the information 

available for model identification, i.e., parameter 

estimation, is quite limited and could thus, severely 

impact accuracy.  

 The information for the development of a virtual 

senor comes from two sources -- the response data set 

and the input data set. Since the information content of 

lancet BGC is quite limited, the proposed approach 

strongly relies on the input data set for information on 

glucose behavior. More specifically, this data set consists 

of meal size with three levels, six (6) variables from the 

BodyMedia armband, and the time of day (TOD) in 

minutes on the 24 hour clock. The inputs that we 

selected for this study from the armband are those 

selected by Rollins et al [16]. We eliminated near body 

temperature as we determined it was not contributing 

significantly to glucose behavior for any of the subjects. 

(Continued on page 22) 

Fig.  1. The SenseWear® Armband of BodyMedia, Inc. 
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The inputs are shown in Table 1. 

 The ability to map the available input/output 

information to accurate sensor measurements depends 

on the model structure, the model building procedure, 

and the inferential algorithm that we are calling the 

“Inferential Engine.” The model structure consists of the 

mathematical functions and the network that tie these 

functions together. The model building (i.e., 

identification) procedure is the process of using input/

output information to estimate the values of unknown 

parameters in the mathematical functions. The 

Inferential Engine is the equation used to obtain the 

virtual senor measurements at the desired sampling 

frequency. This equation represents input selection, 

parameter estimates, and the use of lancet glucose 

measurements to enhance reliability. The purpose of this 

section is to describe these three components of the 

proposed technique in detail.  

Modeling Structure  

The modeling structure of this application must permit 

accurate parameter estimation under a small number of 

sampling times (n), effectively handling several inputs 

with different dynamic behavior, and mild extrapolation. 

The proposed modeling network is what we call the 

Coupled Dynamic Insulin (CDI) network (its structure is 

given in Fig. 2). As shown, the first input, meal size (x1), 

enters both a linear dynamic food block (G1) and a linear 

dynamic unmeasured insulin block (GI). The output from 

the unmeasured dynamic insulin block (vI) enters a 

pseudo blood insulin block which is coupled with the 

food block (G1) which produces the dynamic food input 

(v1) to the pseudo BGC block. Then, the unmeasured 

output from the coupled food block is the dynamic 

glucose (Gf) input due to food consumption. Each of the 

other inputs (e.g. inputs 2-8) enters a separate linear 

dynamic block and the outputs from these blocks are 

collected into non-observable variables (vi) and together 

with Gf are passed through a static block which can be 

any type of function. The CDI model simulates the 

process where food digestion is responsible for the rise 

of blood glucose after each meal, while the secretion of 

insulin is responsible for the fall of blood glucose level a 

period of time later after the meal. The CDI network is 

defined by the attributes of allowing separate dynamic 

behavior for each input and the use of variables for 

unmeasured insulin generation (vI) and unmeasured 

blood insulin concentration (I). To our knowledge, this is 

first application of unmeasured pseudo insulin in 

modeling blood glucose concentration. This idea is a key 

reason for the success of our modeling approach in this 

application of infrequent BGC measurements. 

 The dynamic functions for G i  , i = 1, …, p, I (the 

I is for insulin), follow the modeling work of Rollins et al. 

[16] and are second order differential equations of the 

form: 

(Continued on page 23) 

Table 1. Input variables: Meal Size (1), Armband 

(2-7), and TOD (8). 

Input Name 

1. Meal Size Index 

2. Transverse accel – peaks 

3. Heat flux – average 

4. Longitudinal accel – average 

5. Transverse accel – MAD 

6. GSR – average 

7. Energy expenditure 

8. Time of day (TOD) 

Fig. 2. A graphical representation of the Coupled 
Dynamic Insulin (CDI) network. 
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      (1)                                 

where xi(t) is the ith input, i varies from 1 to p, p is the 

total number of inputs, tai is the lead parameter, ti is the 

time constant, and zi is the damping coefficient, with x1 

= meal size input variable, xi, i = 2, . . ., p-1, are 

armband input variables, and vp is the TOD input 

variable. 

Using backward difference finite derivative 

approximations, Eq. (1) gives (Rollins et al., [16]) 

      
(2) 

with 

  (3)  

such that w2,i. = 1 - d1,i - d2,i - w1,i . This constraint is 

used to impose a unity gain restriction for the linear 

dynamic blocks. Δt is the sampling time for the inputs. 

In the Laplace domain, the linear dynamic functions are 

   (4)  

 Note that the number of dynamic parameters 

associated with each input is three. This small number is 

a strength that we exploit to obtain parameter estimates 

under limited sampling, as discussed below. The CDI 

model for food alone is represented by the following 

coupled Eqs.  (5) and (6): 

         (5)                                                

                       (6) 

where  and  are outputs from dynamic blocks G1 

and GI respectively, and  to  are the “coupled” 

model parameters. 

 We also use backward difference finite 

derivative approximation on Eqs. (5) and (6) to give 

             (7) 

                                                                                    

               (8)                   

Note there are four additional parameters  

(,,  and ) that need to be identified. 

 The function f(V) is called “the static function” 

and is a function of all of inputs. This function can 

theoretically be of any form. For effectiveness under 

mild extrapolation and minimum parameter estimation 

(as discussed below) we have chosen a first order linear 

regression model of the form: 

   (9)                                     

Where t  is the error term and assumed to be 

independently normally distributed with mean 0 and 

variance σ 2 for all t, and ai 
,
s are static parameters.  

 As stated in Rollins et al. [16], the modeling 

objective is simply to maximize the true but unknown 

correlation coefficient between measured and fitted 

BGC. This quantity is represented by  y,ŷ   and estimated 

by rfit. Thus, under this criterion, as a minimum, a model 

is considered useful, if, and only if, 

                          (10) 
(Continued on page 24) 
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Since the degree of usefulness increases with  y,ŷ   , the 

goal is to obtain the largest (as close to the upper limit 

of 1) value as possible. Due to the highly complex 

mapping of the parameters into the response space of 

rfit, the following indirect criterion is used in obtaining 

the parameter estimates as described in Rollins et al. 

[16].  

     (11) 

 

Note that only training data are used to compute SSE 

under Eq. (11).       

Model  Identif icat ion Procedure  

We use the CDI network with Eqs. (1)-(9) and 

developed a procedure that can accurately estimate the 

3(p+1) dynamic parameters, 4 coupled parameters 

( ,,  and ) and the p static parameters even 

when the number of sampling times (n) is much less 

than 4p + 7, the total number of parameters. This 

procedure requires each input to have a separate set of 

dynamic parameters as uniquely met by the Wiener 

network but not by other common networks (e.g. such 

as the Auto Regressive Moving Average with eXogenous 

(ARMAX) variables network) [16].  

 Let Gf,t = 0 and vi,t = 0 for all i in Eq. (9) except 

for one value of i = j, i.e., vi = vj ≠ 0, for one value of i, 

i = 2, …, p. Thus, with only one input variable vi = vj, 

Eq. (9) becomes a simple linear regression model 

(SLRM). To distinguish this SLM from Eq. (9), the fitted 

form is written as  

             (12)                                                     

 Where ŷ i , t = the fitted BGC for the one input i at t; ̂oi 

and ̂i are the estimated intercept and slope parameters, 

re-

spectively, for the SLRM for input i ; and   ŵi,t  is the 

SLRM estimate of  i , t .   

Note that for fitting the SLRM, only five (5) 

parameters (the temporary static parameters γ0 and γi, 

and the permanent dynamic parameters τi, ζi and τai) are 

estimated each time which, as necessary, is less than n 

= 12 for three days of data collection, for example.  

 In Appendix A, a proof is given to show that for 

the SLRM, rfit = ryt   , vi,t .  More specifically, for the SLRM, 

rfit is determined by only ŵi,t  and not by the static model 

coefficients, ̂oi  and ̂i  Thus, for the SLRM, since vi only 

depends on the dynamic parameters for input i, one can 

find the set of dynamic parameters that results in the 

best rfit for each input i separately (i.e., τi, ζi and τai.). 

We exploit this result by decomposing the modeling 

problem into separate sub-problems that will be 

identified in 3 steps: 1. the dynamic parameters for each 

input i, i = 2, …, p,  under Eq. (12) (five parameters are 

estimated for each i); 2. the insulin and food dynamic 

parameters under Eqs. (7),(8), (13) (eleven parameters 

are estimated; one temporary intercept parameter, four 

coupled parameters for initial values to be used in Step 

3, and six permanent dynamic parameters); and 3. the 

permanent static and coupled parameters with all the 

inputs included under Eq. (9) (at most p + four coupled 

parameters are estimated). 

 In Step 1, our current procedure is to manually 

adjust the dynamic parameters one input at a time to 

find the “best” set of values for each input. Our 

definition of “best” will be given momentarily. In Step 2, 

the following reduced form of Eq. (9) is applied: 

                   (13)                                                    

where λ0 is a temporary parameter only used in Step 2. 

This step is the most challenging. With a given set of 

initial values, either some or all the parameters are 

estimated simultaneously using an effective nonlinear 

regression algorithm. This process is the most iterative 

and time consuming as some parameters are manually 
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set and fixed and the rest are estimated using the 

optimization algorithm. This process is iteratively 

repeated until no more improvement can be made in rfit.  

The only input involved in Step 2 is food, i.e., meal size. 

If an adequate rfit (rfit for training should be positive in 

agreement with Eq (10)) is not found in this step, the 

modeling procedure is terminated, and we conclude that 

the procedure failed to find an adequate model for this 

subject from the given data sets. Step 3 is completed in 

one estimation trial when the dynamic and couple 

modeling parameters from Steps 1 and 2 are used since 

Eq. (9) becomes a first order linear regression model. 

However, if one desires to estimate the couple modeling 

parameters also, Eq. (9) becomes a nonlinear regression 

model and the estimation process can be more 

challenging. Note that, for example, with n = 12, or 

three days of data collection and p = 8, at most twelve 

parameters are estimated in Step 3, which is still not 

exceeding n. At the end of all three estimation steps, 

with p = 8, 4p + 7 or 39 total parameters have been 

uniquely estimated in a highly nonlinear modeling 

problem from at least n =12 or three days of data 

collection, for example. This ability is a critical novelty 

and a powerful benefit of this approach.   

 The “best” set of modeling parameters is 

determined for two given scenarios. The first one only 

uses a Training set of data. In this scenario, the goal is 

to maximize rfit of the training set. Consequently, the 

procedure is to reach convergence at the global 

minimum for the least squares objective criterion. This 

estimation procedure is “unsupervised” training (note 

this is a different definition from that of T. Hastie’s book 

[25] and A.J. Izenman’s book [30]). The second scenario 

is when there are both Training and Validation sets of 

data. In this scenario, the goal is to determine the 

largest rfit for the Validation data set with a “close” value 

of rfit for the Training data set. Here, convergence for 

the Training set may not be reached and the Validation 

set determines when the iterative process terminates. 

Since the Validation results determine when the 

optimization process terminates, this is a type of 

“supervised” training. This procedure is used to guard 

against over fitting, (i.e., fitting BGC behavior in the 

Training set that is not due to true variation in BGC). 

The success of both types of training is evaluated 

through the use of an additional set of data called the 

“test set” which had no influence on the model 

identification process (i.e., the parameter estimates). 

The first scenario is used when n is small, say 12, the 

number after 3 days, whereas the second scenario is 

used otherwise, e.g., when n is 24, the number after 6 

days. Parameter estimation was done using the Excel® 

Solver Routine. 

 Successful model identification relies on 

effective selection of initial conditions and starting values 

for model parameters and the dynamic inputs (i.e., the 

vi’s). The following procedure is given under a protocol 

where the armband is worn nearly 24 hours a day and 

removed only for showering. The initial steady state is 

chosen during a period of slow change, commonly early 

in the morning. The set of initial values in our procedure 

are τi = 1.1 ζi = 0.9,   = 20,   = 0.1, and all other 

initial parameter values are equal to zero. The initial 

values for the vi’s have to be determined iteratively. 

When the dynamic parameters are set to values so are 

the vi’s as shown by Eq. (2). Our procedure is to set the 

initial values of the vi’s to their average values over the 

training data. These values are to remain fixed during 

estimation and changed after estimation of dynamic 

parameters. The estimation process for a set of dynamic 

parameters is completed when the “best” rfit is obtained 

with initial values of vi’s close to their average values for 

the training data.    

                     For the missing data due to removal of 

armband[32]: if data missing lasts for a short period of 

time (e.g. no more than one hour of missing data), the 

missing data were interpolated with the average value of 

the two sides of the missing data interval. If data 

missing lasts longer than one hour, we set the missing 

data to its initial value. 

Development of  the Inferentia l  Engine  

After obtaining a full set of parameter estimates, the 

proposed model development procedure has two more 

refinements.  The first one is elimination of any armband 

(Continued on page 26) 

http://www.openaccesspub.org/
http://openaccesspub.org/
http://openaccesspub.org/journals/index.php?jid=8


 

 

Freely Available  Online 

www.openaccesspub.org  |  JBD    CC-license  DOI : 10.14302/issn.2374-9431.jbd-13-283    Vol-1 Issue –1      Page No  26  

inputs that adversely affect the value of rfit. This is done 

by setting each, and only one, ai (for i = 2, …, 7) to zero 

at a time, and observing rfit. If rfit increases for the 

Training set in Scenario 1 or for the Validation set for 

Scenario 2, this input is removed.  After this process is 

completed for each input, all the remaining static 

parameters are estimated under Step 3 for a final time.  

 The final refinement involves the use of lancet 

glucose to help to reduce model bias. Since these 

measurements are infrequent and are not measured at a 

constant rate, it is not possible to build a correction 

model based on the correlation of residuals. The 

correction equation that we use comes from Rollins et 

al. [16] where only the most recent measurement, at t 

= t*, is used. This equation, which represents the 

proposed virtual sensor, is given as:  

                 (14)                                                  

subject to: t > t* and 0 <  < 1, where l is an 

adjustable constant, yt*   is the lancet BGC measurement 

at t = t*,  ̂t  = the estimated BGC at time t under the 

Eq. (9) model,  ̂t*  = the estimated BGC at time t = t* 

under the Eq. (9) model, and ŷ t  = the virtual (i.e., soft) 

sensor value for the proposed method at time t. Note 

that (yt* — ̂t* ) represents that amount of correction and 

this correction diminishes as time increases based on the 

value of  which is close to 1. Thus, by the time the 

next lancet measurement is taken, usually ŷ t  ≈ ̂t  This 

means that at t = t*, ŷ t  ≈ ̂t*  ; at t = t* + Δt, ŷ t ≈ yt* ; 

and for t = t* + kΔt, with k >> 1 and before the next 

lancet measurement, ŷ t   ≈ ̂t  . That is, at the time of 

the lancet measurement, the proposed virtual monitor 

would display a value close to  ̂t , the next value would 

be close to the lancet measurement, and as time 

proceeded, the lancet value would have less corrective 

influence as the predictor would rely more on the model 

to infer BGC. When two sets are used to estimate model 

parameters,  can be set to give the most accurate 

values in the validation set. When only a training set is 

used to estimate the model parameters, a default value 

can be used based on results from modeling several 

subjects. 

Clinical Study for 22 Subjects 

For the proposed method, the development of a virtual-

sensor requires 4 lancet measurements per day spread 

as evenly as possible over the time the subject is awake 

in about a 14 hour period. We did not have access to 

data meeting this requirement. However, from a 

previous study, we had physical-sensor CGM data sets 

which were collected with Institutional Review Board 

(IRB) approval, and the data sets were used to develop 

and evaluate the methodology. Thus, these data sets 

played two roles. First, for each subject, they played the 

role of a surrogate person, i.e., the true BGC for the 

purpose of evaluation. Secondly, they played the role of 

the lancet sampled data, i.e.,, the data used to build the 

virtual-sensors. 

Using 22 test subjects (see Table 2) with 4 

weeks of data collection (in most cases and slightly 

under 4 weeks in other cases except for Subject 1 and 8 

which had only about 3 weeks of data due to loss data), 

we have obtained results to support the modeling 

viability. As just stated, these data sets were collected 

for another study (see Beverlin et al. [26], [32]). 

Modifications had to be made to these data sets for use 

in this study. First, food quantities, which were in grams 

of carbohydrates, fats and proteins, had to be converted 

to a food index  representing meal sizes with 0 for no 

meal, 1 (two time stamps) for a small meal, 2 (three 

time stamps) for a medium meal and 3 (four time 

stamps) for a large meal. In practice the time stamps 

will be entered by the user pressing the time stamp 

button on the armband at the start of a meal. The 

conversion we used was based on the grams of 

carbohydrates only with less than 20 grams being a 

small meal, more than 100 grams being a large meal 

and all other amounts considered a medium size meal. 

Secondly, infrequent BGC measurements were not 

obtained from a lancet meter but converted from a 

(Continued on page 27) 
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continuous glucose monitoring system (CGMS) at a 

sampling rate of only four values  per day at particular 

and fixed times (i.e. only 4 values per day out of the 

continuous readings from CGMS were used) to mimic 

infrequent lancet sampling. CGMS values were taken 

only at 8 am, noon, 4 pm and 8 pm; if data were 

unavailable, then the nearest value was taken with no 

more than 4 values used per day. The monitoring period 

was taken to be from 8 am to 10 pm daily which means 

that this was the only period that virtual BGC were 

reported. Thus, the period from 10 pm to 8 am was 

taken to be a non-monitoring period in order to mimic 

that monitoring is not required during the sleeping 

period. 

Note that, the original data sets contain meal 

information in terms of grams of carbohydrates, fats and 

proteins. The amounts were calculated from self 

reporting logs of the type and quantities of food eaten. 

Hence, the errors of these quantities are likely quite high 

at times and it is likely that a significant number of 

meals were not recorded or logged at the proper times.  

When we converted the quantities to an index value for 

meal size for this study (i.e. “1” represents small meal 

size, “2” for medium size, and “3” for large size), we 

applied the same conversion equation to all of the 

subjects. Thus, the quality of food information that we 

developed our models from in this study is quite poor. 

Therefore, since these results are obtained under poor 

food information they indicate the robustness of the 

technique to low quality food information.  

(Continued on page 28) 

Table 2. Characteristic information on the 22 subjects used in this study. 
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Before evaluating model acceptability, subject 

21 and 22 were rejected due to poor food information. 

As a result, subject 21 and 22 were removed from this 

research from this point on. 

Measures of Performance 

 Model acceptability will be determined on an 

individual subject basis given that the models are 

subject-specific and each individual will only be 

concerned about model accuracy as it pertains to model 

developed for them. Thus, this study is evaluated based 

on the number of subject-models that meet a particular 

Acceptability Criteria. But we state and justify this 

criteria momentarily, after we present the statistics they 

it uses.  

 The first one is called the averaged error (AE) 

and is simply the average value of the residuals: 

                (15)                                     

where m is the number of terms being averaged.   

The second one is called the averaged absolute 

error and is similar to Eq. (15) except that the absolute 

difference is used for the term in the summation as 

follows: 

             (16) 

 

A scaled AAE value to adjust for spread is used called 

the relative AAE (RAAE). This measure of performance is 

determined by dividing Eq. (16) by the standard 

deviation of the values used to calculate AAE as follows: 

    (17)   

 

RAAE is a relative AAE statistic that accounts for large 

spread in the glucose variation of subjects. For 

replicated lancet measurements, the study in Rollins et 

al. [16] determined RAAE to be about 0.60. Thus, we 

will assume that a value around 0.60 is comparable to 

the performance of a glucose lancet meter. However, 

lancet accuracy or even repeatability can vary widely 

from individual to individual due to the accuracy of the 

device, inherent variability in the measurement protocol, 

and human error. Nonetheless, since this is the only 

result that likely exists in this type of study (i.e., four 

weeks of data collection under the protocol of this 

study) we will use it in our criteria. It is also noted that, 

given that the models in this study are developed from 

three discrete levels of food size and not from the three 

types of consumed quantities, and from a much lower 

frequency of glucose data when comparing to  typical 

CGMS values (i.e., four values per day versus 12 values 

per hour), we expected RAAE to be higher and allow for 

slightly higher values in the Acceptability Criteria.  

The last statistic or performance measure is rfit. 

Based on the results in Rollins et al. [16] for a type 2 

diabetic and in Beverlin et al. [26] for the 20 subjects 

used here, we set a minimum acceptable value for rfit of 

0.40. Using these three measures of performance, the 

Model Acceptability Criteria (MAC) for this study is given 

as: 

     (18) 

 

As the MAC shows, a model with an rfit of at least 0.6 is 

considered acceptable based on this value alone. 

However, if this value is between 0.4 and 0.6, the fitted 
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model must meet a certain level of performance on both 

rfit and  AAE or both rfit and RAAE. For example, if AAE 

and RAAE are 18 mg/dL and 0.75, respectively, the AAE 

sub-criterion is rfit ≥ 0.5 and the RAAE one is rfit ≥ 0.55. 

Thus, for this example, the fitted model will meet the 

MAC if, and only if, rfit  ≥ 0.5. As this example illustrate, 

when rfit is in this range, the MAC is written to require rfit 

values to be higher than 0.4 with this requirement 

increasing as AAE and RAAE increase. Note that on the 

upper boundary of rfit = 0.6, AAE must be < 20 mg/dL 

or RAAE must be < 0.8, and on the lower boundary of 

rfit = 0.4, AAE < 16 mg/dL or RAAE < 0.6. The lower 

boundary was defined based on the results in Rollins, et 

al. [16] and the upper boundary was established from 

an examination of fitted models in this work. See Fig. 3 

for plots of three fitted models as they compare with 

CGM measured responses at the limits and middle of the 

MAC.  

Results 

The results of this study are given in Tables 3-5. Each 

table represents a different training period. There are 

two types of predictions in these tables; ̂t*, the values 

of the fitted model at the time the lancet measurements 

were taken and ŷ t ,   fitted model at the sampling rate of 

the CGMS, i.e., every five minutes. The model 

parameters are estimated using ̂t* , but the MAC is 

applied to the testing results for ŷ t to determine model 

acceptability on an individual basis which is shown in the 

tables. In addition, summary results for the performance 

measures are given for all the subjects and for the set of 

subjects meeting the MAC.  

Table 3 gives the modeling results are for three 

(3) days of training under Eq. (13) (i.e., for food only). 

Since training stop at convergence under the least 

squares criterion given by Eq. (11), the remaining days 

consisted of the test set.  In addition, for all these 

subjects, ζ1 = 0.2, τa1 = 0, ζI = 0.8, and τaI = 0. This 

was done to increase the degrees of freedom to 

estimate the more critical parameter τ1, τI and the four 

coupled parameters and to simplify the optimization. 

The best choice for these values is future research work. 

As Table 3 shows, the results indicate that 35% of the 

cases met the MAC. This is really quite promising as a 

minimum initial calibration period given that the number 

of data points, n, used is only 12. In practice, it appears 

that a significant number of subjects could have 

successful calibration after three days and as more data 

are collected this number would grow. This conclusion is 

supported by the results in the next two tables.  

Table 4 contains results under Eq. (9) for one 

week of training, one week of validation and two weeks 

of testing. As shown, 55% of these cases met the MAC. 

In addition, for this group that meets MAC versus all the 

cases in Table 4 as whole, the average values of AAE 

and RAAE dropped considerably from 19.8 mg/dL and 

0.76 to 13.5 mg/dL and 0.71, respectively, while rfit 

increased from 0.47 to 0.55.  These values are excellent. 

Table 5, also under Eq. (9), contains results for two 

weeks of training, one week of validation and one week 

of testing. As shown, the number meeting the MAC 

further to 65% (it is a promising result given the strict 

MAC) with very good average results for this group with 

AAE  = 15.0 mg/dL, RAAE = 0.74 and rfit = 0.54. 

We found that using the armband inputs increases rfit for 

̂t* by 0.1 over using just food alone. (These cases are 

not shown for space considerations). Thus, both food 

and the armband inputs are to obtain the results 

presented in this section. The robustness to poorer food 

quality is supported by similar rfit values for this study as 

compared to the ones in Beverlin et al. [26] and Beverlin 

[32] where food quantities were used on these same 

data sets. 

Concluding Remarks 

This article presented preliminary work on the 

development of a virtual sensor for BGC with the 

objective of developing a noninvasive CGM system that 

could increase CGM among non-insulin dependent 

people. This device would require users to wear a 

readily available armband monitor and manually 

entering meal sizes through the use of a button on the 

armband. This device would require four (4) lancet 

measurements per day as most current invasive CGMSs 

(Continued on page 30) 
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require.  

 The modeling methodology presented in this 

work is quite powerful. It takes on the challenge of 

modeling BCG in a highly complex, non-linear, 

multiple-input, highly underdetermined problem.  As 

illustrated in this work, it is able to develop useful 

multiple-input dynamic models for BGC under free 

living, outpatient, data collection from just four 

glucose measurements per day and from as little as 

three days of data. In addition, these results are 

achieved with minimal food information of only three 

discrete levels. This ability stems from a number of 

innovative ideas to overcome several challenges in 

this complex modeling problem as follows. First, the 

use of the coupled structure allows for the inclusion 

of inferential blood insulin concentration and leads to 

insulin and glucose interaction in the blood. This 

structure is a significant advancement over a straight 

Wiener network and contributes significantly to the 

accuracy and ability to obtain adequate fitting for 

acceptable model usefulness. Secondly, the result in 

Appendix A provided the knowledge that produced 

the idea to decompose the modeling problem into a 

dynamic part and a static part. Added to this idea is 

the inspiration of determining the dynamic 

parameters for each input, one input at a time. Once 

the dynamic parameters are determined for each 

input, they are fixed. Note that, from the use of a 

validation set we are able to control over-fitting and 

by controlling rfit to be about the same in the training 

set and validation set for each input separately, we 

have found that this helps the final rfit in all the data 

sets (Training, Validation, and Testing) to be quite 

similar. After obtaining the dynamic parameters, the 

low number of static parameters is then obtained 

separately as a linear regression model.  Thirdly, as 

the results show, the correction provided by Eq. (14) 

contributes strongly to the accuracy of the proposed 

method in the case of continuous glucose monitoring 

(CGM). While this correction does contribute 

significantly to the reduction in bias, it also 

contributes majorly in the reduction in AAE. This can 

only occur if there is a significant positive correlation 

for the fitted response, as the correction brings it 

 

 

 
Fig. 3. Graphical examples during the testing period for 
three subjects meeting the MAC: Subject 2 (strongly 
meeting the MAC); Subject 6 (weakly meeting the MAC) 
and; Subject 20 (moderately meeting the MAC).    
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close at the times infrequent measurements occur, but 

the correlation determines the direction from these 

points. If the correlation is not positive, the trend will be 

in the wrong direction and accuracy would suffer 

tremendously. This is why subjects must have a 

significant positive correlation for acceptability. In 

practice if this is not achieved, the device would simply 

give a calibration error and not report measurements. 

Lastly, we developed the new Model Acceptability 

Criteria (MAC) which instead of evaluating separate 

aspects of performance such as correlation or  bias, and  

is able to evaluate all of them and also can give a 

summary statistics (MAC Passing Rate) on the sample 

population. 

 This work applied and improved the 

methodology from Rollins et al. [16]. It was not the 

purpose of this work to improve on this approach by 

investigating the impact of other armband variables, or 

the time variant nature of model parameters, as well as 

other model improvement issues. To develop the best 

model for a specific subject, these issues could be 

considered but they add to the modeling overhead, 

which is already very high given the small amount of 

information. The value of this work lies in that the 

modeling methodology shows great potential in 

Table 3. Modeling results of 3 days training and up to 25 days of testing data 
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modeling BGC, and provided powerful tools for statistical 

learning in real life scenario. Nonetheless, these are 

issues that can be addressed in future research.  

 Future work will involve running clinical studies 

under the protocol that subjects will follow when 

wearing the device such as time stamping for meal size 

and using only their glucose meter to collect data. If 

these studies are successful, we plan to develop a 

prototype armband and evaluate it on several subjects. 

We envision this device collecting input and output data 

into the armband where the model will reside. After a 

sufficient number of lancet measurements have been 

collected, the model with be built from these data 

automatically for calibration of the device. After 

successful calibration, the armband will collect input 

data, infrequent output data, and display BGC 

continuously over time on a watch type display or smart 

phone. Transmission of data from the armband to the 

display monitor may utilize Bluetooth technology. 

We have overcome many challenges such as the 

use of a food index, the lack of initial conditions, 

frequent and long term removal of the armband and 

Table 4. Modeling results of 1 week training, 1 week validation and 2 weeks testing data 
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multiple inputs, subject-specific, modeling under 

infrequent sampling.  However, as this work is only 

preliminary, there are still several challenges to 

overcome. This includes finding novel ways to improve 

the accuracy that leads to a higher percent of users 

meeting the MAC. In addition, the model procedure is 

quite complex as it requires advanced modeling 

experience and consists of several steps. One way we 

plan to improve accuracy is by gaining a better 

understanding on the bounds of each parameter. To 

address the model identification issue, we plan to 

development an estimation algorithm that identifies 

parameters automatically. This program will reside in the 

armband and will be used to calibrate the virtual sensor 

from on-line data. These are areas of future research 

that we have begun and the results are quite promising. 
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Appendix A 

 The purpose of this appendix is to provide a 

mathematical proof that rfit, under the simple linear 

regression model given by Eq. 12, does not depend on 

the model coefficients  and  i but only one the 

explanatory variable, vi.t, in this case.   

 With  t  + ivi,t , in this context, rfit is 

mathematically given by 

Table 5. Modeling results of 2 week training, 1 week validation and 1 week testing data 
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(A1) 

Thus, with  i > 0, rfit = r yt,vi,t  and for  i < 0, rfit = - r yt,vi  ,t  

This result means that if the correlation of blood glucose 

concentration (BGC) and vi,t is positive,  i can be set at 

any positive value and rfit, which will be > 0, will depend 

only of the behavior of vi,t which is independently 

controlled by the values of the dynamic parameters 

associated with vi,t . Conversely, if the correlation of BGC 

and vi,t is negative,  i can be set at any negative value 

and rfit will be > 0 and independently controlled by the 

values of the dynamic parameters associated with vi,t . 
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