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Abstract 

 Bivalves are used as bioindicators of heavy metals pollution because they are known to concentrate 

these elements, providing a time integrated indication of environmental contamination. Trace metals can reach 

high concentrations in sediments and also in aquatic organisms by bioaccumulation through the food chain. Six 

heavy metals (Hg, Zn, Pb, Fe, Mg and Cu) were collected and investigated from Abu Hummus, El Behara. The 

concentration of Hg was high in winter as 2.3µg/g in sediment. The Zn concentration was high in summer in 

sediment as 8.1µg/g. The Pb concentration was high in winter in water as 3.3µg/l. The concentration of Fe in 

sediment was high in summer as 492 µg/g. The concentration of Mg was high in sediment as 408µg/g. The 

concentration of Cu was high in summer in sediment as 301µg/g. The mean concentrations of  Fe in the present 

study are within the permissible limits of law 48/1982 (<1 mg/l) and the guideline of (WHO, 1993) which is <1 

mg/l. The mean concentration level of copper is within the permissible limits of law 48/1982 (<1.0 mg/l). The 

mean levels of the heavy metals (Hg, Zn, Pb, Fe, Mg and Cu) detected in the present study in the water stream 

are less than the permissible limits recommended by (USEPA, 2005). In the present study there is a significance 

between all seasons in the protein content in the soft tissue of Spathopsis rubens as the mean concentration 

level in Spring was reported as 102.83mg/g which is higher then that of autumn 100.5mg/g, summer 93.33 mg/

g and winter 80.50 mg/g. 

 In the present study the mean activity level of GPx in spring was higher than the other seasons such as 

spring 31.33u/g ˃ summer 28.33 u/g ˃Autumn 26.67 u/g ˃ winter 20.50u/g. The mean activity level of SOD in 

summer was higher than the other seasons such as summer 38.83 u/g ˃ spring 33.33 U /g ˃Autumn                   

28.83U/g ˃ winter 22.83U/g. The mean activity level of CAT in spring was higher than the other seasons such as 

spring 25.67u/g ˃ summer and autumn19.83u/g ˃ winter 15.17u/g. The mean activity level of MDA in winter 

was 30.50 U/g ˃ summer 22.50U/g ˃ autumn 18.0 U/g ˃ spring 16.83U/g. In the present study it was found 

that the mean activity level of MDA increased in winter at the same time the mean activity level of CAT, SOD and 

GPx were decreased in winter. Negative correlation was reported between CAT and Hg in winter as r=-0.88*. A 

positive correlation coefficient in winter was found between SOD activity level and CAT activity level as r=0.838*. 
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Introduction 

 The Nile River is a source of life to millions of 

people. Pollution caused by inadequate drainage 

systems in rural villages, and irrigation wastewater filled 

with fertilizers and pesticides. Different analytical 

methods were constructed to monitor the water quality 

status in freshwater ecosystems [1]. The Nile River 

water is facing environmental and public health 

problems of water pollution which affects water quality 

and influences the balance of the whole ecosystem [2]. 

The rapid progress in industry led to the release of 

heavy metals in the ecosystem and especially the fresh 

water ecosystem. The accumulation of heavy metals in 

the Nile River water affects the quality of the water. The 

iron and steel industry releases lead and zinc into the 

Nile River. Amer and Abdel Gawad [3] monitored the 

distribution of heavy metals in the Nile River water and 

studied the impacts of heavy metals on the water 

quality. Bakhiet [4] and Ayodele and Abubakar [5] 

suggested that the study of heavy metal contamination 

in bivalves is important in order to consider them as 

bioindicators for heavy metal contamination.The 

pollutants are carried from the source and tend to sink 

thereby polluting the aquatic environment. Although 

information on contaminated regions in the tropical 

areas are lacking, studies on pollution monitoring in 

fresh water lakes environment have been reported using 

different indicator species [6, 5]. Freshwater mollusc 

communities are important in terms of biodiversity and 

ecosystem health. They play significant roles in the 

public and veterinary health and thus need to be 

scientifically more extensively [7]. 

       A lot of researchers studied the ecology and 

population dynamics of the gastropods which play an 

important role in the health of man and his livestock [8]. 

Ali [9] illustrated that molluscs are suitable candidates to 

be used in biomonitoring surveys of Lake Qarun in 

Egypt. Freshwater bivalves provide many ecological 

services to aquatic systems [10, 11]. Large invertebrates 

can be considered metabolic reactors because they 

transfer nutrients and energy from water to sediments 

by filtering and nutrient mineralization [10, 12]. The 

study on mollusk as a possible bioindicator of river water 

quality is because of the fact that they have the ability 

to concentrate pollutants as they are filter feeders [13]. 

Industrial effluents contributing to aquatic pollution 

contain toxic substances which include heavy metals. 

Indiscriminate discharges of these wastes alter the 

quality of water and cause hazards to the fauna. Copper 

is a micro-nutrient and is present as a metal ion in 

certain enzymes and plays an important role in the 

transfer of electrons in electron transport chain. It is a 

component of haemocyanin. There is an increased body 

of evidence implicating heavy metals as a potential 

threat to aquatic organism by way of studies on their 

physiology, biochemistry and ecology. Marine organisms 

are characterized by a greater spatial ability to 

accumulate some metals [14]. Marine organisms are 

characterized by a greater spatial ability to accumulate 

some metals when compared with bottom                         

sediments [15]. The shellfish represents an important 

source of protein for coastal communities. Over 90% of 

human health exposure to several contaminants occurs 

through diet primarily seafood [16, 17]. In order to 

evaluate the adverse effect of the pollutants on aquatic 

organisms, there is a world wide trend to complement 

physical and chemical parameter with biomarkers in 
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aquatic pollution monitoring [18, 19]. 

       Since bivalves are filter feeders, they concentrate 

contaminants to a much higher level than those of the 

surrounding sea [20]. These contaminants may cause 

diseases of humans, especially microbial contaminants, 

because shellfish are often eaten raw or lightly                     

cooked [21, 22]. To reduce the risk, the source of the 

shellfish should be investigated and better quality would 

be attained by appropriate treatment following the 

harvest. The effects of environmental contaminants may 

result from direct toxic actions on tissues or cells or from 

alterations of the homeostatic mechanisms including the 

immune system [23-28]. The protein content in the 

tissues of animals plays a role in the metabolism of 

animals [29]. Heavy metals mainly react with proteins 

and adversely alter the physiological activities hence 

cause risk of life in different way. Protein acts as 

enzyme, hormone and basic structural component of the 

animal. Protein is key substance to show the effect of 

heavy metal. Proteins respond to stress condition for 

better survival by altering their levels. The shellfish 

represents an important source of protein for coastal 

communities. It has been predictable, for instance, that 

over 90% of human health exposure to several 

contaminants occurs through diet primarily                          

seafood [15-17]. 

 Contamination of fresh water with a wide range 

of pollutants has become a matter of concern over last 

few decades. The defence mechanisms against free 

radical-induced oxidative damage include the following 

catalytic removal of free radicals and reactive species by 

factors such as CAT, SOD, GPx. Animal CAT areheme-

containing enzymes that convert hydrogen peroxide 

(H2O2) to water and O2, and they are largely localized in 

subcellular organelles such as peroxisomes. 

Mitochondria and the endoplasmic reticulum contain 

little CAT. The intracellular H2O2 cannot be eliminated 

unless it diffuses to the peroxisomes [30]. GSH-Px 

removes H2O2 by coupling its reduction with the 

oxidation of GSH. GSH-Px can also reduce other 

peroxides. Most animal tissues contain both CAT and 

GSH-Px activity. SODs are metal-containing proteins that 

catalyze the removal of superoxide, generating water 

peroxide as a final product of the dismutation [31]. SOD 

is the antioxidant enzyme that catalysed the dismutation 

of the highly reactive superoxide anion to O2 and to the 

less reactive species H2O2. Peroxide can be destroyed by 

CAT or GPx reactions [32]. Among the biomarker of 

stress, the primary key events in oxidative damage are 

lipid peroxidation (MDA) [33-36]. 

 Aim of the work:   Spathopsis rubens had been 

choosen as example of bivalve which lives in El Behara 

governerate fresh water, to study the levels of heavy 

metals such as Zn, Cu, Pb, Mg, Fe and Hg in water, 

sediment and flesh of Spathopsis rubens collected from 

El Mahmodia stream, River Nile. The aim of the present 

study is to establish its suitability as bio-indicator that 

could be used to monitor heavy metals pollution in Nile 

River and to determine CAT, SOD, GPx and the potential 

of lipid peroxidation. To know the effect of pollutants on 

Biochemicals (protein, lipid and Carbohydrates) in 

Spathopsis rubens. 

Material and Methods 

 In December 2016 to July 2017 the selected 

bivales were collected from Abu Hummus, River Nile, El 

Beheira Egypt (Figure.1). The shell sizes of the detected 

samples were ranging from (10–15 cm) in length, from 

(6–9 cm) in width and from (2.6 to 4.5 cm) in height. 

The sediment and water samples were collected in 

corresponding to the clam settlements to determine the 

initial level of heavy metals. 

 Samples of  Spathopsis rubens were collected 

from Abu Hummus El Beheira, Egypt. Abu hummus lies 

between the Cairo-Alexandria Agricultural road and the 

El Mahmodea stream at; 31.10063oN-30.310063oE. The 

water samples, sediment and flesh of Spathopsis rubens 

were collected from the river water side. Water samples 

were collected in plastic bottles, pre-rinsed with distilled 

water. The bivalves were chosen by harvesting only 

large but with similar sizes and healthy. A total                

of [15-20] samples were collected/location/season then 

were kept in plastic containers filled with water. 

 The biochemical analysis includes the 

determination of metal analysis, organic pollutants, 

protein, lipids, carbohydrates and antioxidant enzymes 

(CAT, SOD, GPx and MDA). The analysis of heavy metals 

(Cu, Fe, Mg, Zn, Pb and Hg) of fresh water was done 

according to Ayodele and Abubakar [5].  The heavy 

metals in sediment and in soft tissues were measured 
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according to [37]. The results are presented as mean ± 

S.D. values. One-way analysis of variance (ANOVA) was 

used to test the significance of depuration in each metal 

concentration and TPHs. Post hoc test was used to 

analyse the multiple comparisons among water, 

sediment and soft parts. All statistical analyses were 

performed using the SPSS 15.0 software [38]. 

Determination of carbohydrate and lipids were according 

to [39]. Determination of protein was estimated by 

Lowry’s method [40]. Determination of Catalase activity 

(CAT) was measured according to Aebigh [41].  

Superoxide dismutase (SOD, EC 1.15.1.1) activity was 

measured using the procedure of Beauchamp and 

Fridovich [42, 43]. Glutathione peroxidase activity levels 

were determined by the method of Pagtia and Valentine 

[44]. Lipid peroxidation (Malondialdehyde) was 

determined by the method of OhKawa [45]. 

Results 

 Bivalve  samples were collected from their 

natural beds from Abu Hummus, El Behirea, Egypt.The 

survey in the present study was reported as the 

following: Spathopsis wahlbergi hartmanni (Martens, 

1866), Spathopsis rubens arcuata (Cailliaud, 1823), 

Lanistes carinates (Olivier, 1804) and Melanoides 

tuberculata (Müller, 1774), Melanoides tuberculata 

(Müller, 1774), Lanistes carinates (Olivier, 1804), Mutela 

singularis (Pallary, 1924). The Spathopsis rubens had 

been choosen (Figure. 2) in the present study. 

Results 

 Bivalve  samples were collected from their 

natural beds from Abu Hummus, El Behirea, Egypt.The 

survey in the present study was reported as the 

following: Spathopsis wahlbergi hartmanni (Martens, 

1866), Spathopsis rubens arcuata (Cailliaud, 1823), 

Caelatura (Horusia) parreyssi (Philippi, 1847), Lanistes 

carinates (Olivier, 1804) and Melanoides tuberculata 

(Müller, 1774), Melanoides tuberculata (Müller, 1774), 

Lanistes carinates (Olivier, 1804), Mutela singularis 

(Pallary, 1924), Caelatura (Caelatura) prasidens 

(Cailliaud, 1827). The Spathopsis rubens had been 

choosen (Figure. 2) in the present study. (Tables 1 - 4) 

 The mean concentration level of Hg was higher 

in winter in sediment as 2.3µg/g than in water and in 

tissue.  

 The mean concentration level of Zn was higher 

in summer in sediment as 8.1 than in water and tissue. 

The mean concentration level of Pb was higher in winter 

in water as 3.3µg/g than in sediment and tissue. The 

mean concentration level of Fe was higher in summer as 

492µg/g than in winter and tissue. The Mg 

concentrations were higher in sediment as 408µg/g than 

in water and tissue. The Cu concentrations were higher 

in summer in sediment as 301µg/g than in water and 

tissue.  

Figure 1. The map of Abu Hummus, ElBehara                  

(Google map). 

Figure 2. Spathopsis rubens 
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Heavy metals Water (no 1), µg/L 
Sediment µg/g 

(no 1) 

Tissue (µg/g) 

 Mean (no 6) 

Hg 1.1 2.1 0.93 

Zn 3.1 4.2 2.08 

Pb 2.7 2.2 1.73 

Fe 300 417 299.7 

Mg 2.44 3.7 2.61 

Cu 1.95 2.2 1.35 

Table 1. The mean concentration levels of heavy metals in water, sediment and bivalve tissue            

collected in autumn (2016-2017) 

Heavy metals Water µg/L Sediment µg/g Mean of tissue µg/g 

Hg 1.8 2.3 1.46 

Zn 3.9 4.5 2.17 

Pb 3.3 2.5 1.65 

Fe 292 392 322 

Mg 2.6 3.5 1.73 

Cu 2.1 2 1.66 

Table 2. The mean concentration levels of heavy metals in water, sediment and bivalve tissue                

collected in Winter (2016-2017) 

Heavy metals 
Water µg/L 

 (no 1) 

Sediment µg/g 

(no 1) 

Average (no 6) 

tissue µg/g 

Hg 1.5 1.9 1.26 

Zn 4.1 5.2 2.83 

Pb 2.2 2.6 1.32 

Fe 235 400 252.33 

Mg 3.2 4.1 2.38 

Cu 1.98 2.3 1.41 

Table 3. The mean concentration levels of heavy metals in water, sediment and bivalve tissue               

collected in Spring (2016-2017) 
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Heavy  metals Water µg/L(no 1) Sediment µg/g (No 1) tissue µg/L(no 6) 

Hg 1.6 2.2 1.10 

Zn 5.6 8.1 4.23 

Pb 2.8 2.9 0.89 

Fe 321 492 274.2 

Mg 4.1 4.8 2.21 

Cu 2.1 3.1 1.14 

Table 4. The mean concentration levels of heavy metals in water, sediment and bivalve tissue                  

collected in Summer (2016-2017) 

GPx Mean ± SD. 

Autumn (n = 6) 26.67 ± 6.35 

Winter   (n = 6) 20.50 ± 4.85 

Spring (n = 6) 31.33 ± 6.35 

Summer (n = 6) 28.33 ± 9.09 

F   (p) 2.681  (0.074) 

Table 5. The mean activity level of GPx    

during (2016-2017). 

Means with different letters are significant; 

F, p: F and p values for ANOVA test. 

Signeficance between groups was done  

using Post Hoc Test (LSD). *: Statistically 

significant at p ≤ 0.05 

SOD Mean ± SD. 

Autumn (n= 6) 28.83bc ± 5.67 

Winter (n = 6) 22.83c± 4.36 

Spring (n = 6) 33.33ab± 7.81 

Summer (n = 6) 38.83a± 8.64 

F   (p) 5.919*   (0.005*) 

Table (6): The mean activity level of SOD during  

(2016-2017). 

Means with different letters are significant; F, p: 

F and p values for ANOVA test. Signeficance 

between groups was done  using Post Hoc Test 

(LSD). *: Statistically significant at p ≤ 0.05 

CAT Mean ± SD. 

Autumn (n = 6) 19.83 ± 5.46 

Winter (n = 6) 15.17 ± 5.38 

Spring (n = 6) 25.67 ± 8.80 

Summer (n = 6) 19.83 ± 3.76 

F    (p) 2.951 (0.057) 

Table 7. The mean activity level of CAT 

during  (2016-2017). 

Means with different letters are significant; 

F, p: F and p values for ANOVA test. 

Signeficance between groups was done  

using Post Hoc Test (LSD). *: Statistically 

significant at p ≤ 0.05 
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Protein Mean ± SD. 

Autumn (n = 6) 100.5 ± 15.04 

Winter (n = 6) 80.50 ± 12.10 

Spring (n = 6) 102.83 ± 18.67 

Summer (n = 6) 93.33 ± 13.7 

F    (p) 2.657    (0.076) 

Table 9. The total protein content in 

Means with different letters are significant.F,p: F 

and p values for ANOVA test, Significant between 

groups was done using Post Hoc Test (LSD).*:             

Statistically significant at p ≤ 0.05 

Means with different letters are significant.F,p: F 

and p values for ANOVA test, Significant between 

groups was done using Post Hoc Test (LSD).*:             

Statistically significant at p ≤ 0.05 

Lipid Mean ± SD. 

Autumn (n = 6) 12.78 ± 2.34 

Winter (n = 6) 10.60 ± 2.90 

Spring (n = 6) 10.25 ± 1.20 

Summer (n = 6) 9.38 ± 1.54 

F    (p) 2.837    (0.064) 

Table 10. The total lipid content in 

Means with different letters are significant.F,p: F 

and p values for ANOVA test, Significant between 

groups was done using Post Hoc Test (LSD).*:             

Statistically significant at p ≤ 0.05 

Carbohydrates Mean ± SD. 

Autumn (n = 6) 12.05 ± 1.91 

Winter (n = 6) 10.62 ± 2.50 

Spring (n = 6) 13.40 ± 2.72 

Summer (n = 6) 11.78 ± 3.63 

F(p) 1.029(0.401) 

Table 11. The carbohydrates content in 

MDA Mean ± SD. 

Autumn (n = 6) 18.0b ± 2.83 

Winter (n = 6) 30.50a± 8.26 

Spring (n = 6) 16.83b± 6.94 

Summer (n = 6) 22.50b± 6.28 

F    (p) 5.620*  (0.006*) 

Table 8. The mean activity level of MDA                 

during  (2016-2017). 

Means with different letters are significant; F, p: F 

and p values for ANOVA test. Signeficance between 

groups was done  using Post Hoc Test (LSD). *:         

Statistically significant at p ≤ 0.05 
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Figure 3. The mean concentration of the activity levels of 

GPx (mU/mg.protein) in different seasons                      

(2016-2017). 

Figure 4. The mean concentration of the activity 

levels of SOD (U/g.tissue) in different seasons 

(2016-2017). 

Figure 5. The mean concentration levels of                

activity of CAT(U/g) in different seasons during                

(2016-2017). 

Figure 6. The mean concentration levels of                          

activity of MDA (nmol/mg tissue) in different   

seasons    (2016-2017). 

Figure 7. The mean concentration levels of total Protein 

(g/dl) in different seasons during (2016-2017). 
Figure 8. The mean concentration levels of lipid 

(mg/dl) in different seasons during (2016-2017). 
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 A Histogram of the mean activity level of 

different enzymes in the bivalve (2016-2017)                

(Figures 3 - 6) 

 A histogram representing the selected 

biochemical parameters in the bivalve (2016-2017) 

(Figures 7 - 9) (Tables 5 - 11) 

 A histogram of the mean concentration levels of 

the selected heavy metals in water (µg/g) in different 

seasons during the year (2016-2017) (Figures 10 - 15) 

(Tables 12 - 16) 

 In Autumn the activity of GPx and of MDA were 

positively correlated with the carbohydrate contents in 

the bivalve as r=0.956* an r=0.865*; respectively. The 

activity level of SOD is negatively correlated with MDA, 

Hg, Fe as r=-0.873*, r=-0.998*, r=-0.925*; 

respectively. The activity of CAT is negatively correlated 

with the lipid content, Pb as r=-0.922*, r=-0.87*; 

respectively. 

                The total protein content is negatively 

correlated with Fe concentration level in tissues                      

as r=-0.908*. The lipid contents is positively correlated 

with the carbohydrate contents as r=0.877* and 

r=0.910*; respectively. Both Hg and Pb are positively 

correlated with Fe concentration level in tissues of the 

bivalve as r=0.932* and r=0.856*; respectively.  

 The correlation coefficient in winter was only 

between SOD mean activity inhibition level and CAT 

mean activity level as r=0.838*. Negative correlation 

was found between CAT and Hg as r=0.88*. The mean 

concentration level of Fe and Mg in tissues showed a 

negative correlation as r=-0.835*. 

 In spring only the mean concentration level of 

Pb and Cu in tissue showed a high significant correlation 

as r=0.978*. 

  In summer there were positive correlation 

between the mean activity level of GPx and lipid content 

and Hg in tissues as r=0.837* and                              

r=0.865*; respectively. The mean activity level of MDA 

was positively correlated with the mean concentration 

level of Fe in tissues as r=0.821*. The mean level of the 

total protein content was positively correlated with Pb 

mean concentration level as r=0.893* and negatively 

correlated with Cu mean concentration level                           

as r=-0.912*. Whereas the mean concentration level of 

the lipid content was negatively correlated with the 

mean concentration level of the carbohydrate contents 

as r=-0.828* and Pb in tissue was also negatively 

correlated with Cu in tissues as r=-0.985. 

Discussion  

 In the present study Spathopsis rubens was 

collected from El Beheira, Egypt, Abu Hummus. These 

species was already detected in previous reports [46]. In 

the present study the heavy metals (Hg, Zn, Pb, Fe, Cu 

and Mg) were detected in the four seasons from autumn 

(2016) to summer (2017). In fresh water, in sediment 

and in the soft tissues of Spathopsis rubens. Some 

enzyme activities were detected as; CAT, SOD, GPx and 

MDA. The total protein, Lipid and carbohydrates in the 

soft tissues of Spathposis rubens were detected. There 

Figure 9. The mean concentration levels of              

carbohydrates in different seasons during               

(2016-2017). 
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Figure 10. the mean concentration level of Hg 

in the different seasons during the year      

(2016-2017). 

Figure 11. the mean concentration level of Zn 

in the different seasons during the year             

(2016-2017). 

Figure 12. the mean concentration level of Pb 

in different seasons during the year                

(2016-2017). 

Figure 13. the mean concentration level of Fe 

in different seasons during the year                 

(2016-2017). 

Figure 14. the mean concentration level of 

Mg in different seasons during the year             

(2016-2017). 

Figure 15. the mean concentration level of Cu 

in different seasons during the year                  

(2016-2017). 
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Table 12. The mean concentration levels of heavy metals in the tissue (Zn, Pb, Fe, Mg, Cu and Hg) in 

different seasons during the year ( 2016-2017): 

Hg Mean ± SD. 

Autumn (n = 6) 0.93b ± 0.21 

Winter (n = 6) 1.46a± 0.45 

Spring  (n = 6) 1.26ab± 0.21 

Summer (n = 6) 1.10b± 0.19 

F  (p) 3.756*  (0.027*) 

Mg Mean ± S.D. 

Autumn (n = 6) 2.61a ± 0.65 

Winter (n = 6) 1.73b± 0.45 

Spring (n = 6) 2.38a± 0.30 

Summer (n = 6) 2.21ab± 0.32 

F(p) 4.043*    (0.021*) 

Pb Mean ± S.D. 

Autumn (n = 6) 1.73a ± 0.37 

Winter   (n = 6) 1.65a± 0.34 

Spring    (n = 6) 1.32a± 0.40 

Summer  (n = 6) 0.89b± 0.29 

F   (p) 7.032*  (0.002*) 

Fe Mean ± S.D. 

Autumn (n = 6) 299.67 ± 52.82 

Winter (n = 6) 322.33 ± 67.30 

Spring (n = 6) 252.33 ± 29.97 

Summer (n = 6) 274.17 ± 45.59 

F   (p) 2.157   (0.12) 

Cu Mean ± SD. 

Autumn (n = 6) 1.35 ± 0.31 

Winter (n = 6) 1.66 ± 0.29 

Spring (n = 6) 1.41 ± 0.32 

Summer (n = 6) 1.14 ± 0.34 

F     (p) 2.7    (0.07) 

Zn Mean ± S.D. 

Autumn  (n = 6) 2.08b ± 0.52 

Winter    (n = 6) 2.17b± 0.63 

Spring     (n = 6) 2.83b± 0.82 

Summer  (n = 6) 4.23a± 0.67 

F  (p) 13.300*   (<0.001*) 

F, p: F and p values for ANOVA test, Significant between groups was done using Post Hoc Test (LSD). 

*: Statistically significant at p ≤ 0.05. 
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Table 13. Correlation between different studied parameters in Autumn (2016-2017) 

   SOD CAT MDA Protein Lipid 
Carbohy­

drates 
Hg Zn Pb Fe Mg Cu 

GPx 
r 0.070 -0.655 -0.033 0.189 0.714 0.956* -0.117 -0.009 0.444 0.050 0.691 0.764 

p 0.895 0.158 0.950 0.721 0.111 0.003 0.825 0.987 0.378 0.925 0.128 0.077 

SOD 

r   0.303 -0.873* 0.744 -0.544 -0.167 -0.998* 0.200 -0.639 -0.925* -0.534 0.003 

p   0.560 0.023 0.090 0.265 0.751 <0.001 0.704 0.172 0.008 0.275 0.996 

CAT 
r    -0.052 0.481 -0.922* -0.805 -0.296 -0.579 -0.870* -0.536 -0.432 -0.581 

p    0.922 0.334 0.009 0.054 0.570 0.228 0.024 0.273 0.393 0.227 

MDA 
r     -0.588 0.374 0.148 0.865* -0.503 0.483 0.796 0.521 0.157 

p     0.220 0.465 0.779 0.026 0.309 0.332 0.058 0.289 0.766 

Protein 
r      -0.499 -0.106 -0.775 -0.364 -0.793 -0.908* -0.020 -0.189 

p      0.314 0.841 0.070 0.479 0.060 0.012 0.970 0.719 

Lipid 

r       0.877* 0.522 0.234 0.910* 0.692 0.714 0.619 

p       0.022 0.289 0.655 0.012 0.128 0.111 0.190 

Carbo­

hydrate

s 

r        0.128 0.084 0.685 0.329 0.724 0.821 

p        0.809 0.874 0.133 0.524 0.104 0.045 

Hg 
r         -0.161 0.639 0.932* 0.482 -0.028 

p         0.761 0.172 0.007 0.333 0.958 

Zn 
r          0.365 0.072 -0.453 0.069 

p          0.477 0.892 0.367 0.897 

Pb 
r           0.856* 0.449 0.606 

p           0.029 0.371 0.202 

Fe 
r            0.426 0.262 

p            0.400 0.616 

Mg 
r             0.365 

p             0.477 

Cu 
r              

p              

r: Pearson coefficient   

*: Statistically significant at p ≤ 0.05 
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   SOD CAT MDA Protein Lipid 
Carbohy­

drates 
Hg Zn Pb Fe Mg Cu 

GPx 
r 0.800 0.632 -0.542 0.421 0.169 0.217 -0.714 -0.079 0.055 -0.564 0.284 -0.227 

p 0.056 0.178 0.267 0.405 0.748 0.680 0.111 0.882 0.918 0.244 0.585 0.665 

SOD 
r   0.838* -0.570 0.290 -0.035 -0.404 -0.664 0.202 -0.142 -0.108 0.075 -0.605 

p   0.037 0.238 0.577 0.948 0.427 0.150 0.701 0.788 0.839 0.888 0.203 

CAT 
r     -0.456 0.032 0.190 -0.314 -0.880* -0.146 0.236 0.159 -0.160 -0.318 

p     0.363 0.952 0.719 0.545 0.021 0.783 0.653 0.763 0.763 0.538 

MDA 
r       -0.339 -0.606 0.136 0.604 -0.408 0.517 0.211 -0.226 0.479 

p       0.511 0.202 0.797 0.205 0.422 0.293 0.688 0.667 0.337 

Protein 
r         -0.286 0.116 -0.027 0.608 -0.017 -0.035 -0.393 0.185 

p         0.583 0.827 0.960 0.200 0.974 0.947 0.441 0.725 

Lipid 
r           0.345 -0.570 -0.309 -0.145 -0.311 0.408 -0.029 

p           0.503 0.238 0.552 0.785 0.548 0.422 0.956 

Carbo­

hydrate

s 

r             -0.090 -0.550 0.440 -0.614 0.238 0.705 

p             0.865 0.258 0.383 0.195 0.650 0.118 

Hg 
r               0.329 -0.258 0.134 -0.046 0.122 

p               0.525 0.622 0.801 0.931 0.818 

Zn 
r                 -0.657 0.277 -0.243 -0.406 

p                 0.156 0.595 0.643 0.425 

Pb 
r                   0.212 -0.511 0.768 

p                   0.687 0.300 0.074 

Fe 
r                     -0.835* 0.105 

p                     0.039 0.844 

Mg 
r                       -0.474 

p                       0.343 

Cu 
r                         

p                         

Table 14. Correlation between different studied parameters in Winter (2016-2017) 
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   SOD CAT MDA Protein Lipid 
Carbohy­

drates 
Hg Zn Pb Fe Mg Cu 

GPx 
r 0.235 0.407 0.138 -0.754 -0.274 -0.765 0.069 

-

0.590 
0.649 0.293 -0.324 0.529 

P 0.654 0.423 0.795 0.083 0.600 0.076 0.897 0.218 0.163 0.573 0.530 0.281 

SOD 
R   0.357 0.709 -0.274 0.248 0.011 0.090 0.023 -0.288 

-

0.079 
0.165 -0.457 

P   0.488 0.115 0.600 0.636 0.983 0.866 0.965 0.580 0.882 0.754 0.363 

CAT 
R     0.778 -0.779 0.594 0.030 0.774 

-

0.513 
0.316 0.392 0.258 0.224 

P     0.068 0.068 0.214 0.955 0.071 0.298 0.542 0.442 0.621 0.670 

MDA 
R       -0.621 0.790 0.242 0.391 

-

0.317 
0.096 0.119 0.236 -0.028 

P       0.188 0.061 0.644 0.443 0.541 0.857 0.823 0.653 0.958 

Protein 
R         -0.406 0.431 -0.265 0.700 -0.773 

-

0.434 
0.240 -0.652 

P         0.425 0.393 0.612 0.122 0.071 0.390 0.647 0.160 

Lipid 
R           0.372 0.291 

-

0.056 
0.108 0.320 0.048 0.060 

P           0.468 0.576 0.917 0.838 0.536 0.929 0.911 

Carbohy­

drates 

R             0.316 0.050 -0.523 
-

0.584 
0.804 -0.413 

P             0.541 0.926 0.287 0.223 0.054 0.415 

Hg 
R               

-

0.243 
-0.129 0.208 0.616 -0.130 

P               0.643 0.808 0.692 0.192 0.805 

Zn 
R                 -0.727 0.225 -0.226 -0.731 

P                 0.101 0.668 0.667 0.099 

Pb 
R                   0.296 -0.471 0.978* 

P                   0.569 0.346 0.001 

Fe 
R                     -0.622 0.201 

P                     0.187 0.702 

Mg 
R                       -0.395 

P                       0.438 

Cu 
R                         

P                         

Table 15. Correlation between different studied parameters in Spring (2016-2017): 

r: Pearson coefficient     

*: Statistically significant at p ≤ 0.05 
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   SOD CAT MDA Protein Lipid 

Carbo­

hydrate

s 

Hg Zn Pb Fe Mg Cu 

GPx 
r -0.106 -0.395 -0.185 -0.095 0.837* -0.667 0.865* -0.113 -0.022 -0.338 0.390 0.038 

P 0.841 0.438 0.725 0.858 0.038 0.148 0.026 0.831 0.968 0.512 0.445 0.942 

SOD 
r   -0.309 0.437 0.693 -0.198 0.544 0.108 0.637 0.363 0.574 0.204 -0.371 

P   0.552 0.387 0.127 0.706 0.264 0.839 0.174 0.479 0.234 0.699 0.469 

CAT 
r     0.579 -0.419 -0.662 0.274 -0.350 0.192 -0.583 0.584 -0.386 0.528 

P     0.228 0.408 0.152 0.600 0.497 0.716 0.224 0.223 0.450 0.281 

MDA 
r       0.030 -0.451 0.251 0.061 0.363 -0.310 0.821* 0.216 0.331 

P       0.955 0.370 0.631 0.909 0.479 0.549 0.045 0.681 0.521 

Protein 
r         -0.239 0.482 -0.267 0.268 0.893* 0.176 0.367 -0.912* 

P         0.649 0.333 0.609 0.608 0.016 0.739 0.474 0.011 

Lipid 
r           -0.823* 0.806 -0.403 -0.021 -0.673 0.393 0.093 

P           0.044 0.053 0.428 0.969 0.143 0.441 0.861 

Carbohydrates 
r             -0.592 0.752 0.181 0.697 -0.520 -0.294 

P             0.216 0.085 0.732 0.124 0.290 0.572 

Hg 
r               0.065 -0.316 -0.112 0.296 0.353 

P               0.902 0.542 0.833 0.569 0.492 

Zn 
r                 -0.145 0.797 -0.508 0.017 

P                 0.785 0.057 0.304 0.974 

Pb 
r                   -0.265 0.473 -0.985* 

P                   0.612 0.344 <0.001 

Iron 
r                     -0.255 0.191 

P                     0.625 0.717 

Mg 
r                       -0.339 

P                       0.511 

Cu 
r                         

P                         

 Table 16. Correlation between different studied parameters in Summer (2016-2017) 

 r: Pearson coefficient.  

 Statistically significant at p ≤ 0.05 
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is a general acceptance that fresh water ecosystems 

undergo little ecological stress when subjected to 

salinities up to 1000 mgL-1. Much of the knowledge of 

the impacts of salinity on aquatic ecosystems comes 

from field sampling a long a gradient of salinity from 

which it is difficult attribute cause of ecological               

change [47]. 

 Bivalves have been used as bioindicators of 

pollution because they have the ability to concentrate 

heavy metals to several other magnitudes [48]. The 

mean concentrations of Fe in the present study are 

within the permissible limits of law 48/1982 (<1 mg/l) 

and the guideline of [49] which is <1 mg/l. The mean 

concentration level of copper is within the permissible 

limits of law 48/1982 (<1.0 mg/l), the values of the 

measured metal. The mean levels of the heavy metals in 

water are less than that of the permissible limits 

recommended by [50]. The changes in metabolic rates 

of bivalves within the seasons and the variation in 

bioavailability of metals in the surrounding environment 

with time might be responsible for the health status of 

the molluscs [51]. The present study is in agreement 

with Cossa and Rondeau [51] in that the higher metal 

burden and concentration in the wet season (such as for 

Fe and Zn). Lower levels for Cd and Hg could be 

attributed to wash out of the lagoons during the rainy 

period. Biological variables such as changes in the tissue 

composition as well as the season of sampling and the 

hydrodynamics of the lagoons have to be considered. 

Seasonal variations are related to a great extent to 

seasonal changes in flesh weight during development of 

gonadic tissues [52]. 

 The present observation showed that the mean 

concentration levels of Cu, Hg and Fe in tissues are 

higher in winter than the other seasons as; the mean 

concentration level of Hg in winter 1.46 µg/g ˃ spring 

1.26µg/g ˃ summer 1.1 µg/g˃ autumn 0.93µg/g. The 

mean concentration level of Cu in winter 1.6 µg/g˃ 

spring 1.4µg/g ˃ summer 1.14µg/g˃ Autumn 1.35µg/g 

and the mean concentration level of Fe in winter 322.33 

µg/g˃ Autumn 299.67µg/g ˃ summer 274.17 µg/g˃ 

spring 252.33µg/g  .The mean concentration levels of Pb 

and Mg are higher in autumn than the other seasons as 

Pb in Autumn 1.73 µg/g˃ winter 1.65µg/g ˃ spring 

1.32µg/g˃ summer 0.89µg/g, Mg in autumn 2.6 µg/g˃ 

spring 2.38µg/g ˃ summer 2.4µg/g˃ Autumn 1.73µg/g. 

The mean concentration level of Zn is higher in summer 

than the other seasons as, Zn in summer 4.23 µg/g˃ 

spring 2.83µg/g ˃ winter 2.17µg/g˃ autumn 2.08µg/g. 

 The present observation showed that the mean 

concentrations level of heavy metal in the sediment 

were high when compared with standard values [48]. 

The mean concentration level of Hg in sediment is 

higher in winter than the other seasons as, winter 2.3 

µg/g ˃ summer 2.2 µg/g ˃Autumn 2.1 µg/g ˃ spring 

1.9 µg/g.The mean concentration level of Zn, Cu, Pb, Fe 

and Mg were higher in summer than the other seasons 

as; Zn in summer 8.1 µg/g ˃ spring 5.2 µg/g winter 4.5 

µg/g ˃ Autumn 4.2 µg/g, Cu in summer 3.1 µg/g ˃ 

spring 2.3 µg/g ˃ Autumn 2.2 µg/g ˃ winter 2 µg/g, Pb 

in summer 2.9 µg/g ˃ spring 2.6 µg/g ˃ winter 2.5 µg/

g˃Autumn 2.2 µg/g. Fe in summer 492 µg/g ˃ Autumn 

417 µg/gram ˃ spring 400 µg/gram ˃ winter 395 µg/g, 

Mg in summer 4.8 µg/gram ˃ spring 4.1 µg/gram ˃ 

Autumn 3.7 µg/gram ˃ winter 3.5 µg/g.The variations in 

metal concentration of the shellfish tissues in the 

present study could be related to the concentration of 

heavy metals in the fresh water. 

 Abdulah [53] reported that the high level of 

heavy metals in the lake may be related to their 

concentration in the stream and rivers discharging into 

the lake. The high level of Zn, Cu and Pb in the river 

indicates the quality of the water prevailing at the period 

of sampling. Trace metal concentrations in clams depend 

on numerous environmental and biological factors [54]. 

Earlier studies by Chouba et al. [55] in Tunisia 

demonstrated higher concentrations of heavy metals in 

clams during high rainfall periods. These findings are in 

agreement with that of the present study. Studies have 

shown that during the spawning period, proteins and 

carbohydrate contents, which have a high affinity for 

heavy metals, are accumulated for gonad tissue 

production, energetic storage and consumption 

[56].There is no access waste water treatment in Abo 

Hummus rural areas as 20% of Egyptian villages have 

inadequate potable water [57-58]. 

 Pollution of the aquatic environment by 

inorganic and organic chemicals is a major factor posing 
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a serious threat to the survival of aquatic                        

organisms [59]. The aquatic environment is subjected to 

various types of pollutants which enter water                    

bodies [60]. It is estimated that the total amount of 

reused treated wastewater in Egypt was about 1.4 billion 

m3 in 2000 [61]. Industrial waste water is considered 

the second of the main sources of Nile water pollution. 

Effluent wastewater is often partially treated [62]. Major 

pollutants in agricultural drains are salts, nutrients, 

pesticide residues, pathogens and toxic organic and 

inorganic pollutants [63, 64]. At high pollution stress 

however, protein synthesis can be suppressed indicating 

disturbance of normal metabolic processes [65-67]. The 

fall in protein level during pollutant exposure may be 

due to increased catabolism and decrease in protein 

synthesis [68]. The digestive gland is the main site of 

degradation and detoxification of toxicants and hence 

resulting into increasing utilization of protein to meet 

energy demand. The higher degradation of protein is the 

tool to access the extent of toxicity [69]. 

 In the present study there is a significance 

between all seasons in the protein content in the soft 

tissue of Spathopsis rubens as the mean concentration 

level in Spring was reported as 102.83mg/g which is 

higher then that of autumn 100.5 mg/g, summer 93.33 

mg/g and winter 80.50 mg/g. Kharat et al. [70] studied 

depletion in protein content in the tissues of 

Macrobrachium kistnensis exposed to different 

concentrations of tributyltin chloride stress on protein 

metabolism similar results were obtained by Sole and 

Porte [71].  Inhibition in the protein synthesis was 

reported to be due to non-selective blocking of 

phosphorylation process in the central nervous               

system [72]. Bivalves generally store carbohydrates in 

large amounts during their growing seasons and use 

them over the rest of the year although proteins may be 

an energy reserve in some bivalve species. Lipids have 

been reported to function most importantly as energy 

storage substances and physical properties of biological 

membranes. In the present study the higher 

concentration of lipid in autumn 12.78 mg/g than in 

winter 10.60 mg/g, spring 10.25 mg/g and in summer 

9.38mg/g  .Fall in carbohydrates level may be due to the 

prolonged exposure of the metabolism to the heavy 

metals and this may be the reason for inactivation of the 

enzyme, involved in the carbohydrate metabolism [73]. 

In the present study the higher concentration of 

carbohydrates was found in spring 13.40 mg/gm than in 

autumn 12.05 mg/gm, summer 11.78 mg/gm and in 

winter 10.62mg/gm. 

 Free radicals are able to react with biological 

macromolecules and produce enzyme activation, lipid 

peroxidation [74]. Antioxidant enzymes activity levels of 

marine bivalve Perna viridis during heavy metals 

exposure were significantly higher in tissues. The mantle 

was observed to significantly contribute to the 

organismal response to lipid peroxidation as indicated by 

high activity levels of antioxidant enzymes [75]. Cu 

strongly stimulates the lipid peroxidation damage of the 

gill plasma membranes [76, 77]. Pannunzio and                

Storey [78] observed a suppression of GPx activity 

during anoxia exposure in the hepatopancreas of the 

marine gastropods Littorina littorea. Main enzymes 

involved in detoxification from reactive oxygen species. 

SOD and GPx have been shown to contribute to 

antioxidant defense in the mussels [79]. Glutathione is 

considered a scavenger able to protect cells from 

oxidative damage [80, 81]. Aerobic organisms are 

protected against oxidative stress by antioxidant 

systems which mobilis enzymes such as the (Cu-Zn 

superoxide dismutase) which transfers O2 to H2O2 [82]. 

 Oxidative stress induced by copper exposure, 

evidenced by increased lipid peroxidation products such 

as malondi aldehyde has also been demonstrated for the 

mussels Mytilus galloprovincialis [83], Perna perna [84], 

Ruditapes decussatus [85], and for the oyster 

Crassostrea virginica [86]. Antioxidant defenses may be 

increased or inhibited by chemical stressors. The 

occurrence of one kind of response or the other depends 

on the intensity and duration of the applied stress and 

the susceptibility of the species that are exposed [87]. 

There are several reports on increased SOD and CAT 

activities in bivalves in the presence of excess free 

radicals [88]. Dietary copper appears to be innocuous to 

the digestive system at low concentrations as copper is 

a cofactor of enzymes such as cytosolic                                  

SOD (Cu-SODiso-enzyme) [89] and is also part of the 

hemocyanin molecule. The excess of this metal could be 
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sequestered into vacuoles or immobilized by biological 

compounds for a possible excretion [90, 91]. Metals can 

induce oxyradical production leading to lipid           

peroxidation [92].  In the present study the mean 

activity level of GPx in Spring was higher than the other 

seasons such as spring 31.33U/g ˃ summer 28.33               

U/g ˃autumn  26.67 U/g ˃ winter 20.50U/g. The mean 

activity level of SOD in summer was higher than the 

other seasons such as summer 38.83 U/g ˃ spring 33.33 

U/g ˃autumn 28.83U/g ˃ winter 22.83U/g. The mean 

activity level of CAT in spring was higher than the other 

seasons such as spring 25.67U/g ˃ summer and 

autumn19.83U/g ˃ winter 15.17U/g. The mean activity 

level of MDA in winter was 30.50 U/g ˃ summer 

22.50U/g ˃ autumn 18.0 U/g ˃spring 16.83U/g. In the 

present study it was found that the mean activity level 

of MDA increased in winter at the same time the mean 

activity level of CAT, SOD and GPx were decreased in 

winter. 

Conclusion 

 Fe, Hg and Cu are higher in winter season while 

Pb, Zn and Mg are higher in summer in tissue of 

Spathopsis rubens. Pb and Hg are higher in winter 

season, Zn, Fe and Mg are higher in summerWhile Cu is 

higher in summer and winter in fresh water. Fe, Zn, Cu, 

Pb and Mg are higher in summer while Hg is higher in 

winter in sediment. 

 The high ratio of protein and carbohydrates in 

spring while the higher ratio of lipids in autumn.CAT, 

GPx  are higher in spring, SOD is higher in summer while 

MDA is higher in winter  . By the effect of aquaculture 

activities, irrigation, mechanized farming and future 

increased loading of agro-industrial effluents and 

domestic waste, The pollution increase in winter due to 

rain water (winter) which move pollutants to river Nile 

and the effect of pollutants appear in Spathopsis rubens 

on the following season, this effect has a disturbance of 

ecosystem and food chains in the aquatic environment. 
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