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Abstract 

 Fungal infections increased substantially in the last years, becoming a relevant public health problem. 

Many of these infections account for high rates of morbidity and mortality. The emergence of resistant fungal 

clinical isolates have also motivate studies to find new antifungal therapies. Candida albicans is an oportunistic 

pathogen and affects a great number of immunocompromised patients worldwide. The marine ecosystem has 

been considered a rich source of bioactive metabolites due to the complexity and originality of its structures. 

Proteins and peptides from marine organisms have been shown to have antiviral, anti-inflammatory, antimalarial, 

anticancer, antimicrobial and antifungal properties. Arenicins are antimicrobial peptides isolated from the marine 

lugworm Arenicola marina with 21 amino acid residues in a β-hairpin structure. Dihydrofolate reductase,                   

exo-b-(1,3)-glucanase and sterol 14α-demethylase are essential C. albincas enzymes that take part in DNA, cell 

wall and membrane metabolism, respectively. The present study evaluates the interaction of arenicin with 

important enzymes of C. albicans related to cell wall, ergosterol and DNA metabolism in order to elucidate 

possible molecular targets. We showed through an in silico approach, that a single compound from a marine 

worm (A. marina), can bind to three C. albicans essential proteins. The interaction occurs in regions inside the 

active site or at least near, with amino acid residues evaluated as hot spots. Arenicin is a new promising 

antifugal drug. The next step is to investigate protein-protein interactions performed by DHFR, EBG and CYP51 

and assess whether arenicin is able to disrupt essential interaction or not. 
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Introduction 

 Fungal infections increased substantially in the 

last years, becoming a relevant public health problem. 

Many of these infections account for high rates of 

morbidity and mortality. Candidiasis, an opportunistic 

fungal infection is caused by fungi belonging to the 

Candida genus [1]. Although the antifungal agents used 

in clinical treatments of mycosis have sometimes proved 

efficient, they are restricted to few targets in fungal cells 

with high toxicity to humans [2]. In addition, the 

problem increases with the emergence of resistant 

clinical isolates [3,4], which makes the search for new 

antifungal therapies extremely relevant.  

   Since the discovery of spongouridine, molecular 

model of the first antiviral used as a therapeutic 

resource for Acquired Immunodeficiency Syndrome 

(AIDS), the biodiversity of the marine ecosystem has 

been considered a rich source of bioactive metabolites 

due to the complexity and originality of its                      

structures [5]. In this scenario, peptides from marine 

organisms have been shown to have antiviral, anti-

inflammatory, antimalarial, anticancer, antimicrobial and 

antifungal properties [6–8].  

 Arenicins are antimicrobial peptides isolated 

from the marine lugworm Arenicola marina with 21 

amino acid residues in a β-hairpin structure (Figure 1). 

In vitro and in vivo studies have shown that arenicins 

exhibit a very potent bactericidal and antifungal effect 

against multi-resistant gram-negative bacteria and 

Candida albicans, respectively [9]. In bacterial, Arenicin 

interacts with membrane lipids promoting membrane 

permeabilization and detachment besides affecting 

cytoplasm metabolism [10]. However, the interaction of 

arenicin with important antifungal targets from Candida 

albicans is unknown.  

 Dihydrofolate reductase (DHFR) catalyzes the 

reduction of dihydrofolic acid to tetrahydrofolic acid [11]. 

The enzyme acts on the synthesis of purines, thymidylic 

acid, amino acids and the regulation of tetrahydrofolate 

levels in the cell, participating in proliferation and   

growth [12]. The protein exo-b-(1,3)-glucanase (EBG) 

takes part in cell expansion and differentiation through 

cell wall remodeling. EBG is also secreted during 

pathogenesis [13]. Finally, CYP51 (sterol                                

14α-demethylase) is a major drug target in the 

cytochrome P450 superfamily. This enzyme is related to 

ergosterol and membranes metabolism [14]. All the 

enzymes described above are important to survivability 

and pathogenesis of Candida species. The identification 

of novel therapeutics can drive a more efficient 

treatment of immunocompromised patients that are 

susceptible to fungal diseases. 

 Molecular anchoring is an important    

computational tool in drug design and targeting. The 

Figure 1. The arenicin structure. The conformational structure of the peptide 

folds into an antiparallel beta-sheet comprising two strands, which are im-

portant for its antimicrobial activity. Arenicin has a high affinity for lipids and 

disrupt fungal and other microorganisms membrane. 
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purpose of the ligand-protein anchor is to predict the 

best interaction orientation of a linker with a protein of 

known three-dimensional structure [15]. Thus, in this 

study we verified the interaction of arenicin with 

important enzymes of C. albicans related to cell wall, 

ergosterol and DNA metabolism in order to elucidate 

possible molecular targets. 

Material and Methods 

 All the 3-D structures used in the analysis are 

available in the PDB (protein databank; https://

www.rcsb.org/). KBDOCK server were used in order to 

assess protein domains and possible interaction between 

protein domains [16]. The protein docking was 

performed by ClusPro [17]. We used PyMol                    

(https://pymol.org) for the visualization of the interface 

of interaction, the visualization of hot spots and for 

creating the figures presented in this manuscript .The 

hot spots in the proteins under study were identified by 

KFC2. The server offers an automated analysis of a 

protein complex interface. The server analyses the 

structural environment around amino acid residues and 

checks for already known hot spots environments 

determined experimentally. The hot spot prediction is 

based on characteristics regarding conformation 

specificity (K-FADE) and biochemical features such as 

hydrophobicity (K-CON) [18,19]. 

 

Results and Discussion 

The Arenicin Properties are Defined by its Amino Acid 

Composition 

 Arginine and valine account for 54% of the 

amino acid residues present in the arenicin structure 

(Figure 2) and they account for the properties presented 

by the peptide. The large amount of arginine residues 

has a role in maintaining the conformational state of the 

peptide and its overall charge [20–22]. Moreover, 

arginine residues may interact with active sites of 

proteins [23–25] that bind to phosphorylated substrates 

through hydrogen bonds. The large amount of valine 

residues helps the peptide folds into its β-hairpin 

structure (Figure 3) [26] and this is related to the 

presence of two non-hydrogen substituent attached to 

the valine C-beta carbon. In addition, valine plays a role 

in substrate recognition of hydrophobic ligands such as 

lipids [27,28], which could explain the high affinity the 

peptide has for membranes. 

Arenicin Binds to Residues in the Active Site of 

Dihydrofolate Reductase 

 The main feature of the conformational 

structure of DHFR is a central region comprised by              

beta-pleated sheets [29]. The active site is surrounded 

by a domain that contain loops and regulate the 

interaction pattern with partner proteins and  

compounds [30]. An efficient strategy for inhibiting 

Figure 2. The arenicin arginine and valine residues. Arginine and valine 

amino acids  correspond to 54% of residues in the arenicin structure. 

They contribute to the conformational state of the peptide, the overall 

charge and affinity for ligands. Red – arginine; blue – valine;                       

green – other amino acid residues. 
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DHFR from C. albicans is to target essential amino acid 

residues at the active site of the enzyme [31–33]. 

Arenicin interacts with a loop inside the active site of 

DHFR (Figure 4). There are five main amino acid 

residues (Ile-Pro-Gln-Lys-Phe) that contribute 

considerably for the stability of the interaction between 

DHFR and the arenicin peptide and they have been 

shown to link to other inhibitor compounds as well [33]. 

Arenicin Binds to Hot Spots Residues Near the Active 

Site of EBG 

 EBG folds into 8-barrel structure with both alfa 

and beta sheets, a typical conformation presented by 

the glycosyl hydrolase family. The active site is in a 

pocket within the protein structure [34]. The pocket                

is energetically maintained by hydrogen-bonded 

interactions [35]. Figure 5 shows the surface of EBG and 

the place where arenicin invades EBG towards the active 

site. We found seven hot spot residues on the EBG 

surface. They energetically contribute to the binding 

between the protein and the marine inhibitor. The main 

hot spot residues from EBG interacting with the inhibitor 

peptide are near residues belonging to the active site 

(figure 6). Arenicin bind to hot spot residues and 

changes the conformational structure of amino acids 

surrounding the active site of the protein, consequently 

inhibiting its activity. 

Arenicin is Surround by Hot Spots Residues in a Cleft of 

CYP51 

 CYP51 is required for ergosterol                 

biosynthesis [36]. It has been extensively investigated 

as the main target for azole antimicrobial drugs [37–39]. 

We found 11 hot spot residues on the C. albicans CYP51 

interface of interaction with the peptide arenicin (Figure 

7). The necessity of finding new target to fungal 

diseases is real, since azoles, although having the ability 

to inhibit CYP51, are toxic to mammals cells and lead to 

severe side effects in patients [40–43]. The marine 

peptide arenicin is held near the active site of the 

enzyme by the hydrophobicity in that area. Inhibition of 

CYP51 leads to disruption of the membrane and cell 

death. The marine peptide fits in a cleft of the protein, 

at the entrance of the active site, and is surrounded by 

hot spot residues, interacting with them via hydrogen 

bonds. 

Concluding Remarks 

 The number of deaths of immunocompromised 

patients caused by opportunistic fungi, including C. 

albicans, has increased significantly [44]. The 

Figure 3. Dihydrofolate reductase (DHFR) interaction with arenicin. DHFR is a homodimeric 

protein and the inhibitor marine compound arenicin binds to a loop within the active site of 

the protein. Arenicin anchors inside the active site and alter slightly the conformational               

structure of DHFR. Green – DHFR; red – arenicin. 
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Figure 5. Surface overview of EBG and arenicin interaction. Arenicin (red) binds to EBG and 

invades a pocket region of the protein that has amino acid residues belonging to the active 

site. Blue – EBG; red – arenicin; white – interface of interaction between the inhibitor peptide 

arenicin and EBG; green – hot spot residue. 

Figure 4. Arenicin anchors inside the active site of dihydrofolate reductase. 

The loop in the active site of DHFR (pink) contains the five amino acid                    

residues Ile-Pro-Gln-Lys-Phe. The binding of the inhibitor compound arenicin 

within the active site of the enzyme might hinder the efficiency of interaction 

between DHFR and partner proteins and consequently reduces its activity 
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Figure 6. Arenicin and the pocket region of EBG. Arenicin (red) binds to EBG and invades a 

pocket region of the protein that has amino acid residues belonging to the active site (pink). 

Green amino acids are hot spots on EBG and the yellow amino acid residue was classified as a 

hot spot and belongs to the active site of EBG, an important residue for inhibiting assays. 

Figure 7. Arenicin surrounded by hot spot residues on CYP51 structure. Arenicin (red) binds to 

CYP51 (pink) and interacts with hot spot residues. Green amino acids are hot spots on CYP51, 

the conformation of the region of interaction changes, affecting the ability of the protein to 

perform its function. 
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therapeutics used against such infections are mostly 

based on azoles and other drugs that develop severe 

side effects in those patients. Here, we showed through 

an in silico approach, that a single compound from a 

marine worm (A. marina), can bind to three C. albicans 

essential proteins. The interaction occurs in regions 

inside the active site or at least near, with amino acid 

residues evaluated as hot spots. Arenicin is a new 

promising antifugal drug. The next step is to investigate 

protein-protein interactions performed by DHFR, EBG 

and CYP51 and assess whether arenicin is able to 

disrupt essential interaction or not. 
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